5,853,412 research outputs found
Fuel cells for power generation and organic waste treatment on the island of Mull
In-situ use of biomass and organic waste streams have the potential to provide the key to energy self sustainability for islands and remote communities. Traditionally biogas fuels have been used in combustion engines for electric power generation. However, fuel cells offer the prospect of achieving higher generating efficiencies, and additionally, important environmental benefits can be achieved by way of mitigating greenhouse gas emissions, whilst providing a carbon sink. This paper presents the design details of a biogas gas plant and fuel cell installation that will provide a practical solution on an island (and be applicable in other remote and rural areas) where connection to the grid can be expensive, and where biofuels can be produced on site at no significant extra cost
Distributions of full and non-full words in beta-expansions
The structures of full words and non-full for -expansions are
completely characterized in this paper. We obtain the precise lengths of all
the maximal runs of full and non-full words among admissible words with same
order
Full-Duplex MIMO Small-Cell Networks: Performance Analysis
Full-duplex small-cell relays with multiple antennas constitute a core
element of the envisioned 5G network architecture. In this paper, we use
stochastic geometry to analyze the performance of wireless networks with
full-duplex multiple-antenna small cells, with particular emphasis on the
probability of successful transmission. To achieve this goal, we additionally
characterize the distribution of the self-interference power of the full-duplex
nodes. The proposed framework reveals useful insights on the benefits of
full-duplex with respect to half-duplex in terms of network throughput
Stability Of contact discontinuity for steady Euler System in infinite duct
In this paper, we prove structural stability of contact discontinuities for
full Euler system
Full-Rate, Full-Diversity, Finite Feedback Space-Time Schemes with Minimum Feedback and Transmission Duration
In this paper a MIMO quasi static block fading channel with finite N-ary
delay-free, noise-free feedback is considered. The transmitter uses a set of N
Space-Time Block Codes (STBCs), one corresponding to each of the N possible
feedback values, to encode and transmit information. The feedback function used
at the receiver and the N component STBCs used at the transmitter together
constitute a Finite Feedback Scheme (FFS). Although a number of FFSs are
available in the literature that provably achieve full-diversity, there is no
known universal criterion to determine whether a given arbitrary FFS achieves
full-diversity or not. Further, all known full-diversity FFSs for T<N_t where
N_t is the number of transmit antennas, have rate at the most 1. In this paper
a universal necessary condition for any FFS to achieve full-diversity is given,
using which the notion of Feedback-Transmission duration optimal (FT-Optimal)
FFSs - schemes that use minimum amount of feedback N given the transmission
duration T, and minimum transmission duration given the amount of feedback to
achieve full-diversity - is introduced. When there is no feedback (N=1) an
FT-optimal scheme consists of a single STBC with T=N_t, and the universal
necessary condition reduces to the well known necessary and sufficient
condition for an STBC to achieve full-diversity: every non-zero codeword
difference matrix of the STBC must be of rank N_t. Also, a sufficient condition
for full-diversity is given for the FFSs in which the component STBC with the
largest minimum Euclidean distance is chosen. Using this sufficient condition
full-rate (rate N_t) full-diversity FT-Optimal schemes are constructed for all
(N_t,T,N) with NT=N_t. These are the first full-rate full-diversity FFSs
reported in the literature for T<N_t. Simulation results show that the new
schemes have the best error performance among all known FFSs.Comment: 12 pages, 5 figures, 1 tabl
Perfect Space–Time Block Codes
In this paper, we introduce the notion of perfect space–time block codes (STBCs). These codes have full-rate, full-diversity, nonvanishing constant minimum determinant for increasing spectral efficiency, uniform average transmitted energy per antenna and good shaping. We present algebraic constructions of perfect STBCs for 2, 3, 4, and 6 antennas
A Research Agenda for Uncooperative Federalists
This paper was presented at the 2012 Legal Scholarship Symposium.
The full video is available here
Working paper 4: Student flows across the UK’s internal boundaries: Entrants to full-time degree courses in 2011
- …
