5,813 research outputs found

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    Predictive physiological anticipatory activity preceding seemingly unpredictable stimuli: An update of Mossbridge et al\u2019s meta-analysis

    Get PDF
    Background: This is an update of the Mossbridge et al\u2019s meta-analysis related to the physiological anticipation preceding seemingly unpredictable stimuli which overall effect size was 0.21; 95% Confidence Intervals: 0.13 - 0.29 Methods: Nineteen new peer and non-peer reviewed studies completed from January 2008 to June 2018 were retrieved describing a total of 27 experiments and 36 associated effect sizes. Results: The overall weighted effect size, estimated with a frequentist multilevel random model, was: 0.28; 95% Confidence Intervals: 0.18-0.38; the overall weighted effect size, estimated with a multilevel Bayesian model, was: 0.28; 95% Credible Intervals: 0.18-0.38. The weighted mean estimate of the effect size of peer reviewed studies was higher than that of non-peer reviewed studies, but with overlapped confidence intervals: Peer reviewed: 0.36; 95% Confidence Intervals: 0.26-0.47; Non-Peer reviewed: 0.22; 95% Confidence Intervals: 0.05-0.39. Similarly, the weighted mean estimate of the effect size of Preregistered studies was higher than that of Non-Preregistered studies: Preregistered: 0.31; 95% Confidence Intervals: 0.18-0.45; No-Preregistered: 0.24; 95% Confidence Intervals: 0.08-0.41. The statistical estimation of the publication bias by using the Copas selection model suggest that the main findings are not contaminated by publication bias. Conclusions: In summary, with this update, the main findings reported in Mossbridge et al\u2019s meta-analysis, are confirmed

    Preparation and Measurement in Quantum Memory Models

    Full text link
    Quantum Cognition has delivered a number of models for semantic memory, but to date these have tended to assume pure states and projective measurement. Here we relax these assumptions. A quantum inspired model of human word association experiments will be extended using a density matrix representation of human memory and a POVM based upon non-ideal measurements. Our formulation allows for a consideration of key terms like measurement and contextuality within a rigorous modern approach. This approach both provides new conceptual advances and suggests new experimental protocols.Comment: published in Journal of Mathematical Psycholog

    Classical Computational Models

    Get PDF
    corecore