16 research outputs found

    Minimum rank and zero forcing number for butterfly networks

    Full text link
    The minimum rank of a simple graph GG is the smallest possible rank over all symmetric real matrices AA whose nonzero off-diagonal entries correspond to the edges of GG. Using the zero forcing number, we prove that the minimum rank of the butterfly network is 19[(3r+1)2r+1−2(−1)r]\frac19\left[(3r+1)2^{r+1}-2(-1)^r\right] and that this is equal to the rank of its adjacency matrix

    Clearing Contamination in Large Networks

    Full text link
    In this work, we study the problem of clearing contamination spreading through a large network where we model the problem as a graph searching game. The problem can be summarized as constructing a search strategy that will leave the graph clear of any contamination at the end of the searching process in as few steps as possible. We show that this problem is NP-hard even on directed acyclic graphs and provide an efficient approximation algorithm. We experimentally observe the performance of our approximation algorithm in relation to the lower bound on several large online networks including Slashdot, Epinions and Twitter. The experiments reveal that in most cases our algorithm performs near optimally

    LNCS

    Get PDF
    The notion of treewidth of graphs has been exploited for faster algorithms for several problems arising in verification and program analysis. Moreover, various notions of balanced tree decompositions have been used for improved algorithms supporting dynamic updates and analysis of concurrent programs. In this work, we present a tool for constructing tree-decompositions of CFGs obtained from Java methods, which is implemented as an extension to the widely used Soot framework. The experimental results show that our implementation on real-world Java benchmarks is very efficient. Our tool also provides the first implementation for balancing tree-decompositions. In summary, we present the first tool support for exploiting treewidth in the static analysis problems on Java programs

    Contraction Obstructions for Connected Graph Searching

    Full text link
    We consider the connected variant of the classic mixed search game where, in each search step, cleaned edges form a connected subgraph. We consider graph classes with bounded connected (and monotone) mixed search number and we deal with the question whether the obstruction set, with respect of the contraction partial ordering, for those classes is finite. In general, there is no guarantee that those sets are finite, as graphs are not well quasi ordered under the contraction partial ordering relation. In this paper we provide the obstruction set for k=2k=2, where kk is the number of searchers we are allowed to use. This set is finite, it consists of 177 graphs and completely characterises the graphs with connected (and monotone) mixed search number at most 2. Our proof reveals that the "sense of direction" of an optimal search searching is important for connected search which is in contrast to the unconnected original case. We also give a double exponential lower bound on the size of the obstruction set for the classes where this set is finite

    Graph Searching, Elimination Trees, and a Generalization of Bandwidth

    Full text link
    corecore