
JTDec: A Tool for Tree Decompositions in Soot

Krishnendu Chatterjee† Amir Kafshdar Goharshady† Andreas Pavlogiannis†

† IST Austria (Institute of Science and Technology Austria),
Am Campus 1, 3400, Klosterneuburg, Austria

{krishnendu.chatterjee, amir.kafshdar.goharshady, andreas.pavlogiannis}@ist.ac.at

Abstract. The notion of treewidth of graphs has been exploited for faster algorithms
for several problems arising in verification and program analysis. Moreover, various
notions of balanced tree decompositions have been used for improved algorithms
supporting dynamic updates and analysis of concurrent programs. In this work, we
present a tool for constructing tree-decompositions of CFGs obtained from Java meth-
ods, which is implemented as an extension to the widely used Soot framework. The
experimental results show that our implementation on real-world Java benchmarks
is very efficient. Our tool also provides the first implementation for balancing tree-
decompositions. In summary, we present the first tool support for exploiting treewidth
in the static analysis problems on Java programs.
JTDec is available at http://pub.ist.ac.at/˜akafshda/JTDec/ and a
conference version of this paper is due to appear in the Fifteenth International Sym-
posium on Automated Technology for Verification and Analysis, ATVA 2017.

1 Introduction

Treewidth of graphs. A very widely studied and well-known concept in graph theory for
algorithmic analysis is the notion of treewidth, which measures the similarity of a graph
to a tree [16, 14]. Along with its mathematical elegance, the treewidth property has great
practical relevance, as many NP-complete problems can be solved in polynomial time on
graphs of constant treewidth [3, 4].

Constant treewidth in verification and program analysis. The constant treewidth prop-
erty has not only been studied in the graph algorithmic community, but has been considered
in many problems in verification and program analysis.

Verification. The constant-treewidth property has played an important role in logic and ver-
ification; for example, MSO (Monadic Second Order logic) queries can be solved in poly-
nomial time [10] (also in log-space [12]) for constant-treewidth graphs; parity games on
graphs with constant treewidth can be solved in polynomial time [15]; and there exist faster
algorithms for probabilistic models (such as Markov decision processes) [6]. Recently it
was shown for problems in quantitative verification the constant treewidth can be exploited
to design much faster algorithms [5], as well as improve space usage [7].

Program analysis. A very important class of constant-treewidth graphs is the control flow
graphs (CFGs) of goto-free programs of many programming languages [17]. It has also been
shown that typically all Java programs have small treewidth [13]. The small treewidth has
been used to develop algorithms for (i) register allocation in polynomial time [17, 2], (ii) in-
terprocedural analysis [9], and (iii) intraprocedural analysis of concurrent programs [8].

Relevant algorithmic questions. In the context of program analysis, the relevant algorith-
mic questions are: (a) given an input CFG of constant treewidth, construct a constant-width

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pub.ist.ac.at/~akafshda/JTDec/

decomposition; and (b) balance a constant-width tree decomposition Balanced tree decom-
positions are required to support fast dynamic algorithms (i.e., algorithms that support fast
updates given small changes in the input graph) [9] as well as for intraprocedural analysis
of concurrent programs [8].

Our contributions. Although the treewidth property has been exploited for faster algo-
rithms in many problems in verification and program analysis, there exists no tool sup-
port for the algorithmic questions we consider. In this work we present JTDec, a tool for
constructing tree decompositions of Java programs. We have implemented existing algo-
rithms for the above algorithmic questions, along with several heuristics that exploit the
special structure of programs. Our tool is integrated as a plugin in the widely used Soot
framework [18]. Our experimental results show that our implementation on real-world Java
benchmarks is very efficient. In summary we present the first tool for tree-decomposition
and balanced tree-decompositions of CFGs of programs in Java, which can be used by al-
gorithms that exploit the low-treewidth property of graphs.

2 Definitions

Graphs and Trees. Let G = (V,E) be a finite directed graph (henceforth called simply a
graph) where V is a set of n nodes and E ⊆ V ×V is an edge relation. Given a set of nodes
X ⊆ V , we denote by G � X = (X,E ∩ (X × X)) the subgraph of G induced by X . A
path P : u v is a sequence of nodes (x1, . . . , xk) such that x1 = u, xk = v, and for
all 1 ≤ i < k we have (xi, xi+1) ∈ E. The length of P is |P | = k − 1. A set of nodes
X ⊆ V is called a connected component of G, if for every pair of nodes u, v ∈ X , there
is either a path P1 : u v or a path P2 : v u in G � X . Additionally, X is called
strongly-connected if both P1 and P2 exist. A tree T = (V,E) is an undirected graph with
a root node u0, such that between every two nodes there is a unique acyclic path. For a node
u, we denote by Lv(u) the level of u which is defined as the length of the acyclic path from
u0 to u. A child of a node u is a node v such that Lv(v) = Lv(u) + 1 and (u, v) ∈ E,
and then u is the parent of v. A tree T is k-ary if every node has at most k-children (e.g., a
binary tree has at most two children for every node). Finally, the depth of T is the maximum
level of its nodes, i.e. maxu Lv(u), and T is called balanced if its depth is logarithmic on
its size, i.e. maxu Lv(u) = O(log n).

Tree-decompositions. A tree-decomposition Tree(G) = T = (VT , ET) of a graph G is a
tree, where every node Bi in T , which is called a bag, is a subset of nodes of G such that:
C1 VT = {B0, . . . , Bb} with Bi ⊆ V , and

⋃
Bi∈VT

Bi = V (every node is covered).
C2 For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi (every edge is covered).
C3 For all i, j, k such that there is a bag Bk that appears in the unique path Bi Bj in T

we have Bi ∩Bj ⊆ Bk (every node appears in a contiguous subtree of T).
Conventionally, we call B0 the root of T , and denote by Lv(Bi) the level of Bi in T . For a
bag B of T , we denote by T (B) the subtree of T rooted at B. A bag B is called the root
bag of a node u if u ∈ B and every B′ that contains u appears in T (B). We often use Bu
to refer to the root bag of u, and define Lv(u) = Lv(Bu). A tree decomposition T is called
normal if for each B1, B2 ∈ VT , such that B2 is a child of B1, then |B2 \ B1| ≤ 1, i.e.
each bag has at most one more node from its parent. The width of the tree-decomposition T
is the size of the largest bag minus 1. The treewidth t of G is the smallest width among all
tree-decompositions of G.

2

(α, β, γ) tree-decompositions. Given a graph G with treewidth t and a fixed α ∈ N, a tree-
decomposition Tree(G) is called α-approximate if it has width at most α ·(t+1)−1. Given
a real constant β < 1 and an integer constant γ ≥ 1 we say that Tree(G) is (β, γ)-balanced,
if for every bag B and every descendant B′ of B with Lv(B′) = Lv(B) + γ, the size of the
subtree T (B′) is at most β times as large as the size of the subtree T (B). A (β, γ)-balanced
tree-decomposition that is α-approximate is called an (α, β, γ) tree-decomposition.
Algorithmic questions. We consider the following algorithmic questions:
Q1: Given a constant-treewidth input graph (being the CFG of a method), construct a tree-

decomposition of constant width.
Q2: Convert an input tree decomposition to a balanced one.
Q3: Convert a tree decomposition to an (α, β, γ) tree-decomposition, for a single balancing

parameter λ ≥ 2, and α = 2 · λ, β = 2−λ+1 and γ = λ (see Remark 1 below).
We note that the solution for Q3 subsumes the solution for Q2 (with any constant λ). In the
next section we will present details of the algorithms for Q1 and Q3.

Remark 1 (Significance). (1) The basic tree-decomposition has been used for polynomial-
time algorithms for register allocation [17, 2]. (2) The balanced tree-decompositions have
been crucial in algorithms for interprocedural analysis [9] and verification of quantitative
properties in graphs [5]. (3) The notion of (α, β, γ) tree-decompositions has been used in
algorithmic dataflow analysis of concurrent programs [8]. The ideal value for α and γ is
1, and for β is 1

2 . However, this exact combination is not achieved in any of the known
algorithms. In Q3 we consider parameters for which efficient algorithms exist and suffice
for the problems considered in [8].

3 Algorithms

We present the algorithms for Q1-Q3. First, we focus on Q1 and then consider Q3 (which
subsumes Q2). Our tool JTDec implements all the algorithms of this section.

3.1 Tree-decomopsitions of CFGs

There exist several general-purpose tree-decomposition algorithms which operate on ar-
bitrary graphs. Here our focus is on tree-decompositions of CFGs. The main part of this
section focuses on outlining a tree-decomposition algorithm that operates on input being
the source code, as opposed to arbitrary graphs. In particular, the input to the algorithm is a
method in Jimple, which is a standard, 3-address representation of Java methods in the Soot
framework. As an example, Fig. 1 depicts a Java method and its Jimple representation, and
Fig. 2 shows the CFG of a simplified version of the Jimple representation and a balanced
tree-decomposition of the CFG.
A dedicated algorithm for tree-decompositions of CFGs. We consider dedicated algo-
rithms that are specific to CFGs, and operate on the source code rather than on the graph
itself [17]. In the following we outline the key steps of one such algorithm. We phrase the
algorithm on Jimple source code. We start with the notion of complex listings required for
the algorithm.
(≤ k)-complex listings. A (≤ k)-complex listing of a graph G = (V,E) is a permutation
of the elements of V , such that for each u ∈ V , there exists a set Su of at most k nodes
preceding u in the permutation, and whose deletion from G separates u from all the nodes

3

void t h r eeNPlusOne (i n t n)
{

whi le (n > 1){
i f (n % 2 == 0){
n /= 2 ;
}
e l s e {
n = 3 ∗ n + 1 ;
}
}
}

1 : n := p a r a m e t e r 0 : i n t
2 : nop
3 : i f n > 1 goto nop
4 : goto [?= nop]
5 : nop
6 : temp$0 = n % 2
7 : i f temp$0 == 0 goto

nop
8 : goto [?= nop]
9 : nop
1 0 : temp$1 = n
1 1 : temp$2 = temp$1 / 2

1 2 : n = temp$2
1 3 : goto [?= nop]
1 4 : nop
1 5 : temp$3 = 3 ∗ n
1 6 : temp$4 = temp$3
1 7 : temp$5 = temp$4 +1
1 8 : n = temp$5
1 9 : nop
2 0 : goto [?= nop]
2 1 : nop
2 2 : re turn

Fig. 1: A Java method (left), and its 3-address code representation in Jimple.

1 i 0 := p a r a m e t e r 0 : i n t
2 goto [?= (b ra nc h)]
3 $ i 1 = i 0 % 2
4 i f $ i 1 != 0 goto $ i 2 = 3 ∗ i 0
5 i 0 = i 0 / 2
6 goto [?= (b ra nc h)]
7 $ i 2 = 3 ∗ i 0
8 i 0 = $ i 2 + 1
9 i f i0>1 goto $ i 1 = i 0 % 2
10 re turn

1 2 3

7

8 9

10

6

54
8 9 10

4 5 6 7 8 9

3 4 5 6 7 9

2 7 8 9

1 2 8 9 10

Fig. 2: A simplified Jimple representation of the method in Fig. 1 (left), Its CFG G and an
approximate, balanced tree-decomposition Tree(G) (right).

preceding u in the permutation. In this case Su is called a separator of u. Given a listing
and a node u, there is a unique minimal choice for separators of nodes [17]. We always
use minimal separators and for brevity drop the word minimal in the sequel. A graph G is
called (≤ k)-complex if it has a (≤ k)-complex listing and is called k-complex if it has a
(≤ k)-complex listing but no (≤ k− 1)-complex listings. Given a (≤ k)-complex listing L
and a pair of distinct nodes u, v, we write v < u to denote that v appears before u in L.
Our main approach for obtaining tree-decompositions from CFGs of Jimple methods is the
following theorem and algorithm, which allows us to focus on computing (≤ k)-complex
listings of the CFG:

Theorem 1. A graph G has treewidth k if and only if it is k-complex [11]. Given any such
listing and separators of all the nodes, a tree-decomposition Tree(G) of width k can be
constructed in linear time [17].

CFG-specific algorithm. Given a listing L, the above algorithm simply creates one bag Bx
per node x, and connects the bag Bu to the bag Bv if v < u and v is the latest element of
Su in the listing or to the root if no such v exists. The bag corresponding to u will contain
the set Su ∪ {u}. Hence, computing a tree-decomposition efficiently reduces to two steps:
1. Finding “good” listings, i.e., listings where each separator has small size.
2. Given a listing L, finding efficiently the separator Su of every node u.

We provide brief and intuitive description of the two steps (following [17]), and refer to the
Appendix for the pseudocode.

Heuristic for good listings. Our algorithm implements a heuristic of [17] for processing
programs in the form of 3-address codes, which is guaranteed to create a listing of small
separators for CFGs of goto-free programs, and is expected to perform well for structured

4

programs. Intuitively, given a CFG, a listing with small separators can be obtained using the
following two rules for the heuristic:

– The nodes of CFG that correspond to entries and exits of block structures (e.g. if-blocks,
while-loops) must appear early in the listing.

– The remaining nodes (e.g. statements within the structures) must appear after the entries
and exits of these structures in the listing.

Finding separators in listings. Given a listing L, the separators Su of nodes of L can be
created efficiently in O(n lg∗ n) time. This is achieved by a single traversal of L from
right to left, and maintaining a disjoint-set data-structure, which keeps track of the strongly-
connected components of G formed by the set of nodes that have been examined already.

3.2 Constructing (α, β, γ) tree-decompositions

Given a CFG G and a binary tree-decomposition Tree(G) of width k, let λ ≥ 2 be the
balancing (integer) parameter (c.f. Q3). For α = 2 · λ, β = 2−λ+1 and γ = λ, the core
procedure for constructing an (α, β, γ) tree-decomposition is a recursive one. In each step
of the recursion, the algorithm uses one of two rules to split a subtree of Tree(G) to con-
nected components. Informally, (i) Rule 1 controls the height (i.e., parameters (β, γ)), and
(ii) Rule 2 controls the width (i.e., parameter α) of the constructed tree-decomposition. The
balancing parameter λ specifies how often each rule is used in the recursion, and thus spec-
ifies the trade-off between height and width. The algorithm is a simplified and efficiently
implementable version of [8, Section 3] (see Appendix for the pseduocode). Given a tree-
decomposition of O(n) bags, the algorithm runs in O(n · log n) time and O(n) space.

4 Implementation

We build upon the widely used Soot framework and JTDec is an extension to it. Soot is
a framework for language manipulation and optimization that provides tools for different
problems in static program analysis. Soot is written in Java and has many different interme-
diate representation schemes for Java programs. We use the Jimple representation which has
a typed 3-address format and is the most widely used of the representations. The main class
for representing CFGs is BriefUnitGraph in which each node of the CFG corresponds
to one Jimple statement, and is represented by the Unit class.
Our implementation is placed under the package JTDec. We provide an implementation
of a class JTDecTree which is used to store and manipulate tree decompositions and
supports basic tree-decomposition operations, e.g., iterating over the bags of the tree, and
adding/removing nodes to bags. Based on this, we have implemented the algorithms of
Section 3 in another class called JTDec in an easy-to-use manner. Specifically, we give the
user access to the following functions in JTDec:
1. createTreeDec: The input is a SootMethod method and returns a tree decompo-

sition of the CFG of the method. In the CFG we treat each Unit as one node.
2. normalizeTreeDec: The input is a tree-decomposition T in form of JTDecTree

and returns a normalized version of T .
3. createBalancedTree: The input is an integer λ and tree-decomposition T in form

of JTDecTree, and returns a balanced version of T with parameter λ.
4. process: The input is a SootMethod and (optionally) integer λ, and applies all the

above functions in the same order and returns a balanced tree decomposition of the CFG
of the method.

5

Range #M Unbalanced λ = 2 λ = 3 λ = 4 λ = 5
T W H T W H T W H T W H T W H

[50, 59] 494 0 3.1 29.7 1 8.5 6.9 1 9.9 5.3 1 10.7 5.1 1 11.0 4.6
[60, 69] 343 1 3.2 33.0 2 8.8 7.1 1 10.6 5.7 2 11.2 5.6 1 11.5 5.0
[70, 79] 232 1 3.4 39.3 2 8.6 7.6 2 10.5 6.4 2 11.1 5.8 1 11.4 5.6
[80, 89] 170 1 3.4 42.8 2 9.0 8.0 2 11.0 6.6 2 11.5 5.9 2 11.9 5.8
[90, 99] 128 1 3.6 45.7 3 9.8 8.4 2 12.1 6.8 2 12.5 5.9 2 13.0 5.8

[100, 149] 394 1 3.6 59.5 4 10.0 8.9 3 12.3 7.2 3 13.1 6.4 3 13.4 6.3
[150, 299] 270 2 4.7 90.6 8 11.3 19.4 8 14.1 8.1 7 14.7 7.2 6 15.2 7.1
[300, 999] 81 5 5.4 203.1 22 17.4 11.8 19 26.6 9.4 17 27.1 8.5 16 27.4 8.0

[1000, 2156] 9 46 2.6 1079.7 98 21.3 15.6 82 20.0 12.2 72.0 26.7 10.9 71 26.7 10.6

Table 1: Evaluation results of JTDec. Times are rounded to the nearest millisecond.

Examples of using JTDec can be found in the Appendix. The tool and source code are
available at http://pub.ist.ac.at/˜akafshda/JTDec/.

5 Evaluation

Experimental results show that JTDec is very efficient. We used JTDec to obtain tree-
decompositions for methods from the DaCapo benchmark suit [1], and to obtain balanced
tree-decompositions using different values of the balancing parameter λ. The experiments
were run on a laptop with Intel Core i5 5200U Processor (2.7 GHz) and 8 GB of RAM.
Table 1 summarizes the results. We divided the benchmark methods based on number of
nodes in their CFG to several ranges and for each range we report number of methods in
that range (#M), mean execution time of the function createTreeDec (T), mean width
of the obtained tree-decompositions (W) and their mean height (H). Then for each λ, we re-
port the mean execution time (T) of createBalancedTree on the tree-decompositions
obtained previously, the mean width of the obtained balanced tree-decompositions (W) and
their mean height (H). The table shows the trade-off between the latter two. All times are
measured in milliseconds. Soot’s analysis typically takes much more time than JTDec.
Acknowledgements. We thank all reviewers for their helpful comments which led to con-
siderable improvements in presentation. The research is partially supported by Vienna Sci-
ence and Technology Fund (WWTF) ICT15-003, Austrian Science Fund (FWF) NFN Grant
No. S11407-N23 (RiSE/SHiNE) and ERC Start grant (279307: Graph Games).

References

[1] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Di-
wan, D. Feinberg, D. Frampton, and S. Z. Guyer. “The DaCapo benchmarks: Java benchmark-
ing development and analysis”. In: ACM Sigplan Notices. Vol. 41. 10. ACM. 2006, pp. 169–
190.

[2] H. Bodlaender, J. Gustedt, and J. A. Telle. “Linear-time register allocation for a fixed number
of registers”. In: SODA. Vol. 98. 1998, pp. 574–583.

[3] H. L. Bodlaender. “A Tourist Guide through Treewidth.” In: Acta cybernetica (1993).
[4] H. L. Bodlaender. “Discovering Treewidth.” In: SOFSEM. Vol. 3381. Springer. 2005, pp. 1–

16.
[5] K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis. “Faster algorithms for quantitative verifi-

cation in constant treewidth graphs”. In: International Conference on Computer Aided Verifi-
cation. Springer. 2015, pp. 140–157.

[6] K. Chatterjee and J. Lacki. “Faster algorithms for Markov decision processes with low
treewidth”. In: International Conference on Computer Aided Verification. Springer. 2013,
pp. 543–558.

6

http://pub.ist.ac.at/~akafshda/JTDec/

[7] K. Chatterjee, R. Rasmus Ibsen-Jensen, and A. Pavlogiannis. “Optimal reachability and a
space-time tradeoff for distance queries in constant-treewidth graphs”. In: LIPIcs-Leibniz In-
ternational Proceedings in Informatics. Vol. 57. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik. 2016.

[8] K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis. “Algorithms for al-
gebraic path properties in concurrent systems of constant treewidth components”. In: ACM
SIGPLAN Notices. Vol. 51. 1. ACM. 2016, pp. 733–747.

[9] K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, and P. Goyal. “Faster Algorithms for Alge-
braic Path Properties in Recursive State Machines with Constant Treewidth”. In: POPL. ACM,
2015.

[10] B. Courcelle. “The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs”. In: Information and computation 85.1 (1990), pp. 12–75.

[11] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. “Fugitive-search games on graphs and
related parameters”. In: Theoretical Computer Science 172.1-2 (1997), pp. 233–254.

[12] M. Elberfeld, A. Jakoby, and T. Tantau. “Logspace versions of the theorems of Bodlaender and
Courcelle”. In: Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium
on. IEEE. 2010, pp. 143–152.

[13] J. Gustedt, O. Mæhle, and J. Telle. “The treewidth of Java programs”. In: Algorithm Engineer-
ing and Experiments (2002), pp. 57–59.

[14] R. Halin. “S-functions for graphs”. In: Journal of geometry 8.1-2 (1976), pp. 171–186.
[15] J. Obdrzálek. “Fast mu-calculus model checking when tree-width is bounded”. In: CAV. Vol. 3.

Springer. 2003, pp. 80–92.
[16] N. Robertson and P. D. Seymour. “Graph minors. III. Planar tree-width”. In: Journal of Com-

binatorial Theory, Series B 36.1 (1984), pp. 49–64.
[17] M. Thorup. “All structured programs have small tree width and good register allocation”. In:

Information and Computation 142.2 (1998), pp. 159–181.
[18] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. “Soot-a Java bytecode

optimization framework”. In: Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research. IBM Press. 1999, p. 13.

7

Appendix

A Pseudocode and Details of Algorithms

In this section we provide psuedocode of all the algorithms implemented in the class JTDec
along with descriptions of what they do and references. The graph below shows the depen-
dencies between these algorithms. An edge from a procedure A1 to another procedure A2

means that A1 calls A2 as part of its operation.

A.1 Obtaining a Tree Decomposition from the Control Flow Graph

We use the algorithm introduced in [17] to obtain a listing of constant complexity. We then
find the separators of nodes in this listing and convert it to a tree decomposition. The follow-
ing two algorithms, for creating listings are quoted from [17] and are treated in more details
there. The second algorithm finds maximal chains. Given a set I ⊆ {1, 2, . . . , n}2 a chain
from i to j in I is a sequence of pairs (i1, j1), (i2, j2), . . . , (ik, jk) ∈ I with i = i1 and
j = jk such that for each 1 ≤ l < k, the pairs (il, jl) and (il+1, jl+1) are chained together
as segments, i.e. il < il+1 < jl < jl+1. A chain from i to j in I is called a maximal I-chain
if no chain exists from i′ to j′ such that i′ ≤ i and j′ ≥ j and (i′, j′) 6= (i, j). Maximal
chains in the following algorithm correspond to the two intuitive properties of listings as in
the heuristic Section 3.1.
In order to find separators of vertices in a given listing, we parse the listing from right to left
(end to beginning) and maintain the following parameters as we go left:

– Connected components of the induced subgraph of the CFG on parsed vertices, and
– For each such connected component, a set of its neighbors among non-parsed vertices.

When we reach a vertex u, its separator, Su is the set of all non-parsed vertices that can
be reached from u through a path that contains no other non-parsed vertices. We can find
this set by merging u’s connected component with components of all parsed neighbors of u
and then getting the list of non-parsed neighbors of the resulting component. If we store the
connected components in a disjoint set data structure that uses trees and path compression,
as is done in the JTDec class JTDecDSU, the whole algorithm takes amortized O(n lg∗ n)
time, assuming the listing has a constant complexity.
Finally, we use the algorithm from Theorem 1 to convert a listing to a tree decomposition.

8

Algorithm 1: createListing

Input: A method M containing n nodes s1, s2, . . . sn and its control flow graph
Output: A listing of the nodes of M

1 Assign J ← all pairs (i, j) connected in the control flow graph, i.e. si contains a jump to sj
2 Assign S ← symmetric closure of J
3 createChains(J)
4 createChains(S)
5 Assign i← 0
6 for j from n downto 1 do
7 if sj is not marked then
8 Mark sj with i
9 Assign i← i+ 1

10 if there is a maximal S-chain from k to j and sk is not marked then
11 Mark sk with i
12 Assign i← i+ 1

13 if there is a maximal J-chain from k to j and sk is not marked then
14 Mark sk with i
15 Assign i← i+ 1

16 end
17 return nodes in order of their marks

Algorithm 2: createChains

Input: A subset I of {1, 2, . . . , n}2
Output: A set C of pairs (i, j) such that there exists a maximal I-chain from i to j

1 Assign C ← ∅
2 Assign s← 0
3 Assign i0 ← 0
4 Assign j0 ← n+ 1
5 for i from 1 to n do
6 if there is a j > i, such that (i, j) ∈ I then
7 Assign j ← max{j|(i, j) ∈ I}
8 while js ≤ i do
9 Assign C ← C ∪ {(is, js)}

10 Assign s← s− 1

11 end
12 while j ≥ js > i do
13 Assign i← is
14 Assign s← s− 1

15 end
16 Assign s← s+ 1
17 Assign is ← i
18 Assign js ← j

19 end
20 return C

9

Algorithm 3: findSeparators

Input: A listing L of size n
Output: Separators of nodes in L

1 Initialize a disjoint set data structure for storing connected components
2 for i from n downto 1 do
3 for j > i in neighbors of i do
4 Merge the connected components of i and j in the disjoint set data structure
5 end
6 Assign Si ← the set of all neighbors k of the connected component of i, such that k < i

7 end
8 return Si’s

Algorithm 4: listingToTreeDec

Input: A listing v1, v2, . . . , vn of the nodes of a method M and its nodes’ separators, The control
flow graph of M

Output: A tree decomposition of the control flow graph of M

1 Assign T ← empty tree decomposition
2 Add B1 = {v1} as the root of T
3 for i from 2 to n do
4 Assign Bi ← Svi ∪ {vi}
5 Add Bi to T
6 Assign T.parent[Bi]← B1

7 if Svi 6= ∅ then
8 Assign h← max{j|vj ∈ Svi}
9 Assign T.parent[Bi]← Bh

10 end
11 return T

Algorithm 5: createTreeDec

Input: A method M and its control flow graph
Output: A tree decomposition of the control flow graph of M

1 Create a listing of the control flow graph using createListing
2 Find the separators of this listing using findSeparators
3 Convert the listing to a tree decomposition using listingToTreeDec
4 return the obtained tree decomposition

10

A.2 Obtaining Balanced Tree Decompositions

The algorithm for balanced tree-decompositions is a simplified and efficiently imple-
mentable version of [8, Section 3]. The algorithm consists of two conceptual steps.
1. Given a binary tree-decomposition Tree(G) and a balancing integer parameter λ ≥ 2,

a tree of bags T is constructed, which is (β, γ)-balanced (algorithm Balance).
2. T is turned to an α-approximate tree decomposition of G (algorithm

expandRankTree).
Algorithm Balance is a recursive procedure that operates on inputs C which are connected
components of bags of Tree(G). Given such a component C, Balance determines a bag
B ∈ C, using one of two rules. Informally, (i) Rule 1 controls the height (i.e., parame-
ters (β, γ)), and (ii) Rule 2 controls the width (i.e., parameter α) of the constructed tree-
decomposition. The balancing parameter λ specifies how often each rule is used in the re-
cursion, and thus specifies the trade-off between height and width. In either case of the rules,
the removal of B splits C into components C1, C2, C3. Then Balance is called recursively
on those inputs, and the return bags B1, B2, and B3 are made children of B in the con-
structed tree T . The algorithm Balance uses the notion of neighborhood which is defined
as follows: The neighborhood Nh(C) of the component C contains all bag of Tree(G) that
are adjacent to nodes of C. Additionally, given a bag B, we define Nh(B) = Nh(C), where
C is the component on which B was chosen by Balance according to Rule 1 or Rule 2.
The correctness of the algorithm follows from [8, Theorem 1] (as we consider a simplified
version).

Algorithm 6: Balance

Input: A component C of T , a natural number ` ∈ [λ]
Output: A rank tree RG

1 Assign T ← an empty tree
2 if C = {B} then
3 Make B the root of T
4 else if ` > 0 then

// Rule 1

5 Let B ← a bag of C whose removal splits C to C1, C2, C3 with |Ci| ≤ |C|
2

6 Assign Ti ← Balance(Ci, (`+ 1) mod λ)
7 Make B the root of T and Ti the children of T
8 else
9 if |Nh(C)| > 1 then

// Rule 2

10 Let B ← a bag of C whose removal splits C to C1, C2 with |Nh(Ci) ∩ Nh(C)| ≤ |Nh(C)|
2

11 Assign Ti ← Balance(Ci, (`+ 1) mod λ)
12 Make B the root of T and Ti and T2 the children of T
13 else
14 Assign T ← Balance(C, (`− 1) mod λ)
15 end
16 end
17 return T

11

Algorithm 7: expandRankTree

Input: A rank tree T obtained from Balance
Output: A tree decomposition created by expanding T

1 Assign T ′ ← T
2 for each bag B′

i in T ′ do
3 Assign B′

i ←
⋃

Bj∈Nh(Bi)∪{Bi}Bj

4 end
5 return T ′

Algorithm 8: createBalancedTree

Input: An unbalanced tree decomposition T and a positive integer λ > 1
Output: A balanced tree decomposition T ′

1 Assign T ′ ← Balance(T)
2 Assign T ′ ← expandRankTree(T ′)
3 return T ′

B Example of Use

In this section we use the function threeNPlusOne from Section 3.1 as an example to
demonstrate the use JTDec. We consider that the input method (function) is obtained as
a SootMethod and is called method. For instructions on how to do this, consult Soot
documentation.
All the main methods in JTDec return their outputs as a JTDecTree. Each instance of
the class JTDecTree corresponds to a tree-decomposition and has methods for access-
ing and manipulating it. Some of these will be addressed in more details in the following
example. In each of these tree decompositions, both the bags (vertices of the tree decom-
position) and the nodes (of the control flow graph) are numbered and identified by integers.
The only requirement is that these integers should be distinct, but our methods create con-
secutive numbers starting with 1. Also, if a JTDecTree is passed as an argument to one
of the methods in JTDec, then it must be ensured that the tree is connected, otherwise ex-
ceptions and undefined behavior can arise. Note that JTDecTree allows users to make
local changes to the tree-decomposition (see the comments in the class itself for more in-
formation). If such changes are made, then the global variables like width and depth are not
updated (due to the high computational cost associated with it). To update these variables,
JTDecTree.traverseTree() needs to be invoked. In the following example we do
not have to care about this since all our JTDecTrees are created by JTDec itself.
We begin our example by creating a tree-decomposition of the control flow graph
method. Recall that method is of type SootMethod. The following line creates a tree-
decomposition named treeDecomposition:

JTDecTree treeDecomposition = JTDec.createTreeDec(method);

There is also an option of passing a boolean value to the methods in JTDec, to flag that
a log should be written in stderr. In this case the code to run is:

JTDecTree treeDecomposition = JTDec.createTreeDec(method, true);

In this case the log in stderr is:

12

[JTDec] [createTreeDec] Obtaining CFG of the method
[JTDec] [createTreeDec] CFG obtained
[JTDec] [createTreeDec] The lines were numbered as follows:
[JTDec] [createTreeDec] 1: n := @parameter0: int
[JTDec] [createTreeDec] 2: nop
[JTDec] [createTreeDec] 3: if n > 1 goto nop
[JTDec] [createTreeDec] 4: goto [?= nop]
[JTDec] [createTreeDec] 5: nop
[JTDec] [createTreeDec] 6: temp$0 = n % 2
[JTDec] [createTreeDec] 7: if temp$0 == 0 goto nop
[JTDec] [createTreeDec] 8: goto [?= nop]
[JTDec] [createTreeDec] 9: nop
[JTDec] [createTreeDec] 10: temp$1 = n
[JTDec] [createTreeDec] 11: temp$2 = temp$1 / 2
[JTDec] [createTreeDec] 12: n = temp$2
[JTDec] [createTreeDec] 13: goto [?= nop]
[JTDec] [createTreeDec] 14: nop
[JTDec] [createTreeDec] 15: temp$3 = 3 * n
[JTDec] [createTreeDec] 16: temp$4 = temp$3
[JTDec] [createTreeDec] 17: temp$5 = temp$4 + 1
[JTDec] [createTreeDec] 18: n = temp$5
[JTDec] [createTreeDec] 19: nop
[JTDec] [createTreeDec] 20: goto [?= nop]
[JTDec] [createTreeDec] 21: nop
[JTDec] [createTreeDec] 22: return
[JTDec] [createTreeDec] Finding successors of each node
[JTDec] [createTreeDec] Creating a list of neighbors of each node
[JTDec] [createTreeDec] successors are: {1=[2], 2=[3], 3=[4, 5], 4=[21],
5=[6], 6=[7], 7=[8, 9], 8=[14], 9=[10], 10=[11], 11=[12], 12=[13],
13=[19], 14=[15], 15=[16], 17=[18], 16=[17], 19=[20], 18=[19], 21=[22],
20=[2], 22=[]}

[JTDec] [createTreeDec] neighbors are:{1=[2], 2=[1, 3, 20], 3=[2, 4, 5],
4=[3, 21], 5=[3, 6], 6=[5, 7], 7=[6, 8, 9], 8=[7, 14], 9=[7, 10],
10=[9, 11], 11=[10, 12], 12=[11, 13], 13=[19, 12], 14=[8, 15], 15=[16, 14],
17=[16, 18], 16=[17, 15], 19=[18, 20, 13], 18=[17, 19], 21=[4, 22],
20=[2, 19], 22=[21]}

[JTDec] [createTreeDec] J is:[(18, 19), (16, 17), (14, 15), (12, 13),
(2, 3), (6, 7), (10, 11), (21, 22), (17, 18), (1, 2), (5, 6), (9, 10),
(3, 5), (8, 14), (19, 20), (11, 12), (3, 4), (7, 9), (7, 8), (4, 21),
(20, 2), (15, 16), (13, 19)]

[JTDec] [createTreeDec] S is:[(19, 18), (18, 19), (17, 16), (16, 17),
(15, 14), (14, 15), (13, 12), (12, 13), (3, 2), (2, 3), (6, 7), (7, 6),
(10, 11), (11, 10), (22, 21), (21, 22), (18, 17), (17, 18), (6, 5),
(5, 6), (2, 1), (1, 2), (9, 10), (10, 9), (5, 3), (3, 5), (8, 14),
(14, 8), (20, 19), (19, 20), (12, 11), (11, 12), (4, 3), (3, 4),
(7, 9), (9, 7), (7, 8), (8, 7), (21, 4), (4, 21), (2, 20), (20, 2),
(16, 15), (15, 16), (19, 13), (13, 19)]

[JTDec] [createTreeDec] Creating the listing

13

[JTDec] [createTreeDec] Created the following listing:
[JTDec] [createTreeDec] [22, 21, 2, 3, 20, 19, 7, 18, 17, 16, 15, 14, 13,
12, 11, 10, 9, 8, 6, 5, 4, 1]
[JTDec] [createTreeDec] Finding separators
[JTDec] [createTreeDec] Separators are:
[JTDec] [createTreeDec] {1=[2], 2=[21], 3=[2, 21], 4=[3, 21], 5=[3, 6],
6=[3, 7], 7=[19, 3], 8=[7, 14], 9=[7, 10], 10=[7, 11], 11=[7, 12],
12=[7, 13], 13=[19, 7], 14=[7, 15], 15=[16, 7], 17=[18, 7], 16=[17, 7],
19=[3, 20], 18=[19, 7], 21=[22], 20=[2, 3], 22=[]}

[JTDec] [createTreeDec] Nodes of the tree decomposition are: {1=[22],
2=[21, 22], 3=[2, 21], 4=[2, 3, 21], 5=[2, 3, 20], 6=[19, 3, 20],
7=[19, 3, 7], 8=[19, 18, 7], 9=[17, 18, 7], 10=[17, 16, 7], 11=[16,
7, 15], 12=[7, 14, 15], 13=[19, 7, 13], 14=[7, 12, 13],
15=[7, 11, 12], 17=[7, 9, 10], 16=[7, 10, 11], 19=[3, 6, 7],
18=[7, 8, 14], 21=[3, 4, 21], 20=[3, 5, 6], 22=[1, 2]}

[JTDec] [createTreeDec] Edges of the tree decomposition are:[(16, 17),
(14, 15), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (13, 14), (1, 2),
(5, 6), (9, 10), (19, 20), (3, 4), (11, 12), (7, 13), (7, 8), (4, 21),
(3, 22), (7, 19), (15, 16), (12, 18)]

[JTDec] [createTreeDec] Created this JTDecTree:
------JTDecTree------
width: 2
numberOfVertices: 22
root: 1
height: 12
parents: {1=1, 2=1, 3=2, 4=3, 5=4, 6=5, 7=6, 8=7, 9=8, 10=9, 11=10, 12=11,
13=7, 14=13, 15=14, 17=16, 16=15, 19=7, 18=12, 21=4, 20=19, 22=3}
children: {1=[1, 2], 2=[3], 3=[4, 22], 4=[21, 5], 5=[6], 6=[7],
7=[19, 8, 13], 8=[9], 9=[10], 10=[11], 11=[12], 12=[18], 13=[14], 14=[15],
15=[16], 17=[], 16=[17], 19=[20], 18=[], 21=[], 20=[], 22=[]}
bags: {1=[22], 2=[21, 22], 3=[2, 21], 4=[2, 3, 21], 5=[2, 3, 20],
6=[19, 3, 20], 7=[19, 3, 7], 8=[19, 18, 7], 9=[17, 18, 7], 10=[17, 16, 7],
11=[16, 7, 15], 12=[7, 14, 15], 13=[19, 7, 13], 14=[7, 12, 13],
15=[7, 11, 12], 17=[7, 9, 10], 16=[7, 10, 11], 19=[3, 6, 7], 18=[7,
8, 14], 21=[3, 21, 4], 20=[3, 5, 6], 22=[1, 2]}

rootBags: {1=22, 2=3, 3=4, 4=21, 5=20, 6=19, 7=7, 8=18, 9=17, 10=16,
11=15, 12=14, 13=13, 14=12, 15=11, 17=9, 16=10, 19=6, 18=8, 21=2, 20=5,
22=1}

levels: {1=0, 2=1, 3=2, 4=3, 5=4, 6=5, 7=6, 8=7, 9=8, 10=9, 11=10, 12=11,
13=7, 14=8, 15=9, 17=11, 16=10, 19=7, 18=12, 21=4, 20=8, 22=3}
---End of JTDecTree---
[JTDec] [createTreeDec] Process finished

We now go through this log and explain each part. As mentioned earlier, we identify each
node of the CFG with an integer. At first the CFG is obtained using Soot and the used node
numbering is printed. This is in the same order as obtained by iterating over the control flow
graph in its BriefUnitGraph format and its default iterator. For readers unfamiliar with
BriefUnitGraph, the function JTDec.getUnitsOf can be used to obtain the same
numbering as a HashMap<Integer, Unit>. Here is an example code:

14

System.out.println(JTDec.getUnitsOf(method));

and its output:
{1=n := @parameter0: int, 2=nop, 3=if n > 1 goto nop, 4=goto [?= nop],
5=nop, 6=temp$0 = n % 2, 7=if temp$0 == 0 goto nop, 8=goto [?= nop], 9=nop,
10=temp$1 = n, 11=temp$2 = temp$1 / 2, 12=n = temp$2, 13=goto [?= nop],
14=nop, 15=temp$3 = 3 * n, 17=temp$5 = temp$4 + 1, 16=temp$4 = temp$3,
19=nop, 18=n = temp$5, 21=nop, 20=goto [?= nop], 22=return}

The log continues with S and J as in Algorithm 2 and then the listing obtained from Algo-
rithm 1 and its separators which are found using Algorithm 3. Finally a tree decomposition
is created by Algorithm 4 and is printed at the very end of the log. This can be done by
simply printing the resulting JTDecTree, i.e., the code

JTDecTree treeDecomposition = JTDec.createTreeDec(method);
System.out.println(treeDecomposition);

outputs the following representation of the tree decomposition:
------JTDecTree------
width: 2
numberOfVertices: 22
root: 1
height: 12
parents: {1=1, 2=1, 3=2, 4=3, 5=4, 6=5, 7=6, 8=7, 9=8, 10=9, 11=10, 12=11,
13=7, 14=13, 15=14, 17=16, 16=15, 19=7, 18=12, 21=4, 20=19, 22=3}

children: {1=[1, 2], 2=[3], 3=[4, 22], 4=[21, 5], 5=[6], 6=[7], 7=[19, 8,
13], 8=[9], 9=[10], 10=[11], 11=[12], 12=[18], 13=[14], 14=[15], 15=[16],
17=[], 16=[17], 19=[20], 18=[], 21=[], 20=[], 22=[]}

bags: {1=[22], 2=[21, 22], 3=[2, 21], 4=[2, 3, 21], 5=[2, 3, 20], 6=[19, 3,
20], 7=[19, 3, 7], 8=[19, 18, 7], 9=[17, 18, 7], 10=[17, 16, 7], 11=[16, 7,
15], 12=[7, 14, 15], 13=[19, 7, 13], 14=[7, 12, 13], 15=[7, 11, 12],
17=[7, 9, 10], 16=[7, 10, 11], 19=[3, 6, 7], 18=[7, 8, 14], 21=[3, 21,
4], 20=[3, 5, 6], 22=[1, 2]}

rootBags: {1=22, 2=3, 3=4, 4=21, 5=20, 6=19, 7=7, 8=18, 9=17, 10=16, 11=15,
12=14, 13=13, 14=12, 15=11, 17=9, 16=10, 19=6, 18=8, 21=2, 20=5, 22=1}

levels: {1=0, 2=1, 3=2, 4=3, 5=4, 6=5, 7=6, 8=7, 9=8, 10=9, 11=10, 12=11,
13=7, 14=8, 15=9, 17=11, 16=10, 19=7, 18=12, 21=4, 20=8, 22=3}

---End of JTDecTree---
Here the tree is composed of 10 bags, is rooted at bag number 1, has a height of 7 and a
width of 3, see Figure 3. After the global properties, parents and children of each bag are
printed, e.g. parent of vertex 3 is 2 and children of vertex 2 are 3 and 4. Then the bag data is
printed, e.g. bag 4 contains nodes 8 and 9. Then the root bag of each of the nodes is printed
and finally the distance between each of the bags and the root of the tree are given. This data
can be obtained by calling the respective functions in JTDecTree as well.

int width = treeDecomposition.getTreeWidth(); //returns 2
int height = treeDecomposition.getHeight(); //returns 12

15

int root = treeDecomposition.getRoot(); //returns 1
int x = treeDecomposition.getParent(3); //returns 2
Set<Integer> y;
y = treeDecomposition.getChildren(2); //returns [3]
y = treeDecomposition.getBag(4); //returns [2, 3, 21]
int l = treeDecomposition.getLevel(5); //returns 4
int rb = treeDecomposition.getRootBag(4); //returns 21
int d = treeDecomposition.getDegree(2); //returns 2

This tree-decomposition can be normalized by:

JTDecTree normalTD = JTDec.normalizeTreeDec(treeDecomposition);
System.out.println(normalTD);

In this case the original tree happens to be normal and does not change. Now we can balance
this tree-decomposition using JTDec.createBalancedTree:

JTDecTree balancedTwo = JTDec.createBalancedTree(treeDecomposition,
2);

JTDecTree balancedThree = JTDec.createBalancedTree(
treeDecomposition, 3);

System.out.println(balancedTwo);
System.out.println(balancedThree);

This balances the tree with λ = 2, 3 and prints the resulting balanced tree-decompositions
(Figures 3, 4 and 5). Here is the output:
------JTDecTree------
width: 7
numberOfVertices: 16
root: 1
height: 4
parents: {1=1, 2=1, 3=1, 4=3, 5=4, 6=4, 7=1, 8=7, 9=8, 10=8, 11=1, 12=11,
13=12, 14=13, 15=12, 16=12}
children: {1=[1, 2, 3, 7, 11], 2=[], 3=[4], 4=[5, 6], 5=[], 6=[], 7=[8],
8=[9, 10], 9=[], 10=[], 11=[12], 12=[16, 13, 15], 13=[14], 14=[], 15=[],
16=[]}

bags: {1=[19, 18, 3, 20, 5, 6, 7, 13], 2=[19, 3, 5, 6, 7], 3=[16, 19, 3, 18,
7, 15], 4=[17, 16, 19, 18, 7, 8, 14, 15], 5=[16, 7, 8, 14, 15], 6=[17, 16,
18, 7, 15], 7=[19, 3, 7, 10, 11, 13], 8=[19, 7, 9, 10, 11, 12, 13], 9=[7,
9, 10, 11], 10=[7, 10, 11, 12, 13], 11=[2, 19, 3, 21, 20, 7], 12=[1, 19,
2, 3, 21, 20, 22], 13=[2, 3, 4, 21, 20], 14=[2, 3, 4, 21, 20], 15=[1, 2,
21], 16=[2, 21, 22]}

rootBags: {1=12, 2=11, 3=1, 4=13, 5=1, 6=1, 7=1, 8=4, 9=8, 10=7, 11=7, 12=8,
13=1, 14=4, 15=3, 17=4, 16=3, 19=1, 18=1, 21=11, 20=1, 22=12}
levels: {1=0, 2=1, 3=1, 4=2, 5=3, 6=3, 7=1, 8=2, 9=3, 10=3, 11=1, 12=2,
13=3, 14=4, 15=3, 16=3}
---End of JTDecTree---
------JTDecTree------
width: 10
numberOfVertices: 15
root: 1
height: 3

16

parents: {1=1, 2=1, 3=1, 4=3, 5=3, 6=5, 7=1, 8=7, 9=7, 10=1, 11=10, 12=10,
13=10, 14=13, 15=13}
children: {1=[1, 2, 3, 7, 10], 2=[], 3=[4, 5], 4=[], 5=[6], 6=[], 7=[8, 9],
8=[], 9=[], 10=[11, 12, 13], 11=[], 12=[], 13=[14, 15], 14=[], 15=[]}
bags: {1=[16, 2, 19, 3, 21, 5, 6, 7, 11, 12, 15], 2=[19, 3, 5, 6, 7], 3=[17,
16, 19, 3, 7, 8, 14, 15], 4=[16, 7, 8, 14, 15], 5=[17, 16, 19, 18, 7, 15],
6=[17, 16, 19, 18, 7], 7=[19, 3, 7, 9, 10, 11, 12, 13], 8=[7, 9, 10, 11,
12], 9=[19, 7, 11, 12, 13], 10=[19, 2, 3, 4, 21, 20, 7], 11=[2, 3, 4,
21], 12=[19, 2, 3, 21, 20], 13=[1, 2, 3, 21, 22], 14=[1, 2, 21], 15=[2,
21, 22]}

rootBags: {1=13, 2=1, 3=1, 4=10, 5=1, 6=1, 7=1, 8=3, 9=7, 10=7, 11=1, 12=1,
13=7, 14=3, 15=1, 17=3, 16=1, 19=1, 18=5, 21=1, 20=10, 22=13}
levels: {1=0, 2=1, 3=1, 4=2, 5=2, 6=3, 7=1, 8=2, 9=2, 10=1, 11=2, 12=2,
13=2, 14=3, 15=3}
---End of JTDecTree---
Finally, the function JTDec.process does all the steps above at once.

JTDecTree result = JTDec.process(method, 3);

This creates a tree decomposition of the CFG of method, normalizes it and then balances
it with λ = 3 and returns the result. The true flag can be passed to enable log printing in
stderr. It should also be noted that one can avoid specifying a λ in which case the default
value of 2 will be used.

17

1 {22}

2 {21, 22}

3 {2, 21}

4 {2, 3, 21}

5 {2, 3, 20}

6 {3, 19, 20}

7 {3, 7, 19}

8 {7, 18, 19}

9 {7, 17, 18}

10 {7, 16, 17}

11 {7, 15, 16}

12 {7, 14, 15}

13 {7, 13, 19}

14 {7, 12, 13}

15 {7, 11, 12}

16 {7, 10, 11}

17 {7, 9, 10}

18 {7, 8, 14}

19 {3, 6, 7}

20 {3, 5, 6}

21 {3, 4, 21}

22 {1, 2}

Fig. 3: The initial tree decomposition obtained from createTreeDec. Each bag has a
number and contains a list of nodes of the CFG.

18

1 {3, 5, 6, 7, 13, 18, 19, 20}

7 {3, 7, 9, 10, 11, 13, 19}3 {3, 7, 15, 16, 18, 19} 11 {2, 3, 7, 19, 20}

8 {7, 9, 10, 11, 12, 13, 19}

2 {3, 5, 6, 7, 19}

4 {7, 8, 14, 15, 16, 17, 18, 19}

5 {7, 8, 14, 15, 16}

12 {1, 2, 3, 19, 20, 21, 22}

16 {2, 21, 22}15 {1, 2, 21}13 {2, 3, 4, 20, 21}

14 {2, 3, 4, 20, 21}

10 {7, 10, 11, 12, 13} 9 {7, 9, 10, 11}6 {7, 15, 16, 17, 18}

Fig. 4: Result of balancing the tree in Figure 3 with λ = 2.

1 {2, 3, 5, 6, 7, 11, 12, 15, 16, 19, 21}

7 {3, 7, 9, 10, 11, 12, 13, 19}3 {3, 7, 8, 14, 15, 16, 17, 19}2 {3, 5, 6, 7, 19} 10 {2, 3, 4, 7, 19, 20, 21}

4 {7, 8, 14, 15, 16} 5 {7, 15, 16, 17, 18, 19}

6 {7, 16, 17, 18, 19} 9 {7, 11, 12, 13, 19}8 {7, 9, 10, 11, 12}

13 {1, 2, 3, 21, 22}12 {2, 3, 19, 20, 21}

11 {2, 3, 4, 21}

15 {2, 21, 22}14{1, 2, 21}

Fig. 5: Result of balancing the tree in Figure 3 with λ = 3.

19

C Running JTDec from the Command Line

JTDec packages come with three jar files as explained below:
– JTDec-source.jar contains the Java source files of JTDec.
– JTDec-lib.jar is the library file which can be imported in a java project to use

JTDec. This file does not include soot, but depends on it.
– JTDec.jar is an executable jar that includes soot and can be used to obtain tree

decompositions of Java methods.
In this section we briefly demonstrate how to run JTDec.jar from the command line
environment.
JTDec.jar gets a set of java source or class files1, runs soot over them and produces
tree-decompositions of all the methods in the given classes.
It can be invoked as follows:

java -jar JTDec.jar [JTDec Parameters] [Soot Parameters]

JTDec Parameters consist of the following two:
– The first parameter can be either true or false and tells JTDec whether it should

print a log to stderr.
– The second parameter is the number λ as explained in the previous section.

For example, in order to process two files A.java and B.java (located in the same folder
as JTDec.jar), where the main function is in the former, and create tree decompositions
of all the methods with λ = 3 one can execute:

java -jar JTDec.jar false 3 -cp . -pp A B -main-class A

1 Jimple files are also supported.

20

	JTDec: A Tool for Tree Decompositions in Soot

