193 research outputs found

    From-Below Boolean Matrix Factorization Algorithm Based on MDL

    Full text link
    During the past few years Boolean matrix factorization (BMF) has become an important direction in data analysis. The minimum description length principle (MDL) was successfully adapted in BMF for the model order selection. Nevertheless, a BMF algorithm performing good results from the standpoint of standard measures in BMF is missing. In this paper, we propose a novel from-below Boolean matrix factorization algorithm based on formal concept analysis. The algorithm utilizes the MDL principle as a criterion for the factor selection. On various experiments we show that the proposed algorithm outperforms---from different standpoints---existing state-of-the-art BMF algorithms

    Clustering Boolean Tensors

    Full text link
    Tensor factorizations are computationally hard problems, and in particular, are often significantly harder than their matrix counterparts. In case of Boolean tensor factorizations -- where the input tensor and all the factors are required to be binary and we use Boolean algebra -- much of that hardness comes from the possibility of overlapping components. Yet, in many applications we are perfectly happy to partition at least one of the modes. In this paper we investigate what consequences does this partitioning have on the computational complexity of the Boolean tensor factorizations and present a new algorithm for the resulting clustering problem. This algorithm can alternatively be seen as a particularly regularized clustering algorithm that can handle extremely high-dimensional observations. We analyse our algorithms with the goal of maximizing the similarity and argue that this is more meaningful than minimizing the dissimilarity. As a by-product we obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary factorizations. Our algorithm for Boolean tensor clustering achieves high scalability, high similarity, and good generalization to unseen data with both synthetic and real-world data sets

    {MDL4BMF}: Minimum Description Length for Boolean Matrix Factorization

    No full text
    Matrix factorizations—where a given data matrix is approximated by a prod- uct of two or more factor matrices—are powerful data mining tools. Among other tasks, matrix factorizations are often used to separate global structure from noise. This, however, requires solving the ‘model order selection problem’ of determining where fine-grained structure stops, and noise starts, i.e., what is the proper size of the factor matrices. Boolean matrix factorization (BMF)—where data, factors, and matrix product are Boolean—has received increased attention from the data mining community in recent years. The technique has desirable properties, such as high interpretability and natural sparsity. However, so far no method for selecting the correct model order for BMF has been available. In this paper we propose to use the Minimum Description Length (MDL) principle for this task. Besides solving the problem, this well-founded approach has numerous benefits, e.g., it is automatic, does not require a likelihood function, is fast, and, as experiments show, is highly accurate. We formulate the description length function for BMF in general—making it applicable for any BMF algorithm. We discuss how to construct an appropriate encoding, starting from a simple and intuitive approach, we arrive at a highly efficient data-to-model based encoding for BMF. We extend an existing algorithm for BMF to use MDL to identify the best Boolean matrix factorization, analyze the complexity of the problem, and perform an extensive experimental evaluation to study its behavior

    Clustering {Boolean} Tensors

    Get PDF
    Tensor factorizations are computationally hard problems, and in particular, are often significantly harder than their matrix counterparts. In case of Boolean tensor factorizations -- where the input tensor and all the factors are required to be binary and we use Boolean algebra -- much of that hardness comes from the possibility of overlapping components. Yet, in many applications we are perfectly happy to partition at least one of the modes. In this paper we investigate what consequences does this partitioning have on the computational complexity of the Boolean tensor factorizations and present a new algorithm for the resulting clustering problem. This algorithm can alternatively be seen as a particularly regularized clustering algorithm that can handle extremely high-dimensional observations. We analyse our algorithms with the goal of maximizing the similarity and argue that this is more meaningful than minimizing the dissimilarity. As a by-product we obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary factorizations. Our algorithm for Boolean tensor clustering achieves high scalability, high similarity, and good generalization to unseen data with both synthetic and real-world data sets
    • …
    corecore