3,173 research outputs found

    A pan-tilt camera Fuzzy vision controller on an unmanned aerial vehicle

    Get PDF
    is paper presents an implementation of two Fuzzy Logic controllers working in parallel for a pan-tilt camera platform on an UAV. This implementation uses a basic Lucas-Kanade tracker algorithm, which sends information about the error between the center of the object to track and the center of the image, to the Fuzzy controller. This information is enough for the controller, to follow the object moving a two axis servo-platform, besides the UAV vibrations and movements. The two Fuzzy controllers of each axis, work with a rules-base of 49 rules, two inputs and one output with a more significant sector defined to improve the behavior of those

    Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles

    Get PDF
    Abstract This paper presents a methodology for tracking moving vehicles that integrates Unmanned Aerial Vehicles with video processing techniques. The authors investigated the usefulness of Unmanned Aerial Vehicles to capture reliable individual vehicle data by using GPS technology as a benchmark. A video processing algorithm for vehicles trajectory acquisition is introduced. The algorithm is based on OpenCV libraries. In order to assess the accuracy of the proposed video processing algorithm an instrumented vehicle was equipped with a high precision GPS. The video capture experiments were performed in two case studies. From the field, about 24,000 positioning data were acquired for the analysis. The results of these experiments highlight the versatility of the Unmanned Aerial Vehicles technology combined with video processing technique in monitoring real traffic data

    The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

    Full text link
    Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.comComment: IEEE International Conference on Intelligent Transportation Systems (ITSC) 201
    corecore