9,616 research outputs found

    N\mathcal{N}-Extended D=4D=4 Supergravity, Unconventional SUSY and Graphene

    Get PDF
    We derive a 2+12+1 dimensional model with unconventional supersymmetry at the boundary of an AdS4{\rm AdS}_4 N\mathcal{N}-extended supergravity, generalizing previous results. The (unconventional) extended supersymmetry of the boundary model is instrumental in describing, within a top-down approach, the electronic properties of graphene-like 2D materials at the two Dirac points, K{\bf K} and K′{\bf K}'. The two valleys correspond to the two independent sectors of the OSp(p∣2)×OSp(q∣2){\rm OSp}(p|2)\times {\rm OSp}(q|2) boundary model in the p=qp=q case, which are related by a parity transformation. The Semenoff and Haldane-type masses entering the corresponding Dirac equations are identified with the torsion parameters of the substrate in the model.Comment: 27 pages, 1 figur

    A new magnetic field dependence of Landau levels on a graphene like structure

    Full text link
    We consider a tight-binding model on the honeycomb lattice in a magnetic field. For special values of the hopping integrals, the dispersion relation is linear in one direction and quadratic in the other. We find that, in this case, the energy of the Landau levels varies with the field B as E_n(B) ~ [(n+\gamma)B]^{2/3}. This result is obtained from the low-field study of the tight-binding spectrum on the honeycomb lattice in a magnetic field (Hofstadter spectrum) as well as from a calculation in the continuum approximation at low field. The latter links the new spectrum to the one of a modified quartic oscillator. The obtained value γ=1/2\gamma=1/2 is found to result from the cancellation of a Berry phase.Comment: 4 pages, 4 figure

    Multi-particle composites in density-imbalanced quantum fluids

    Get PDF
    We consider two-component one-dimensional quantum gases with density imbalance. While generically such fluids are two-component Luttinger liquids, we show that if the ratio of the densities is a rational number, p/q, and mass asymmetry between components is sufficiently strong, one of the two eigenmodes acquires a gap. The gapped phase corresponds to (algebraic) ordering of (p+q)-particle composites. In particular, for attractive mixtures, this implies that the superconducting correlations are destroyed. We illustrate our predictions by numerical simulations of the fermionic Hubbard model with hopping asymmetry.Comment: 4+ pages, 1 figure, published versio

    Theory of Diamagnetism in the Pseudogap Phase: Implications from the Self energy of Angle Resolved Photoemission

    Full text link
    In this paper we apply the emerging- consensus understanding of the fermionic self energy deduced from angle resolved photoemisssion spectroscopy (ARPES) experiments to deduce the implications for orbital diamagnetism in the underdoped cuprates. Many theories using many different starting points have arrived at a broadened BCS-like form for the normal state self energy associated with a d-wave excitation gap, as is compatible with ARPES data. Establishing compatibility with the f-sum rules, we show how this self energy, along with the constraint that there is no Meissner effect in the normal phase are sufficient to deduce the orbital susceptibility. We conclude, moreover, that diamagnetism is large for a d-wave pseudogap. Our results should apply rather widely to many theories of the pseudogap, independent of the microscopic details.Comment: 15 pages, 8 figure

    An Empirical Model for the Radio Emission from Pulsars

    Get PDF
    A model for slow radio pulsars is proposed which involves the entire magnetosphere in the production of the observed radio emission. It is argued that observations of pulsar profiles suggest that a feedback mechanism exists between the star surface and the null charge surface, requiring particle flow in both directions. In their flow to and from the surface the particles execute an azimuthal drift around the magnetic pole, thereby creating a ring of discrete `emission nodes' close to the surface. Motion of the nodes is observed as the well-known subpulse `drift', but is interpreted here as a small residual component of the real particle drift. The nodes can therefore move in either direction, or even remain stationary. A precise fit is found for the pulsar PSR0943+10. Azimuthal interactions between different regions of the magnetosphere depend on the angle between the magnetic and rotation axes and influence the conal type, as observed. The requirement of intermittent weak pair-production in an outergap suggests a natural evolutionary link between radio and gamma-ray pulsars.Comment: 17 pages 8 figure

    Flow equation approach to the linear response theory of superconductors

    Full text link
    We apply the flow equation method for studying the current-current response function of electron systems with the pairing instability. To illustrate the specific scheme in which the flow equation procedure determines the two-particle Green's functions we reproduce the standard response kernel of the BCS superconductor. We next generalize this non-perturbative treatment considering the pairing field fluctuations. Our study indicates that the residual diamagnetic behavior detected above the transition temperature in the cuprate superconductors can originate from the noncondensed preformed pairs.Comment: 12 pages, 4 figure

    A fully quantum mechanical calculation of the diffusivity of hydrogen in iron using the tight binding approximation and path integral theory

    Full text link
    We present calculations of free energy barriers and diffusivities as functions of temperature for the diffusion of hydrogen in bcc-Fe. This is a fully quantum mechanical approach since the total energy landscape is computed using a new self consistent, transferable tight binding model for interstitial impurities in magnetic iron. Also the hydrogen nucleus is treated quantum mechanically and we compare here two approaches in the literature both based in the Feynman path integral formulation of statistical mechanics. We find that the quantum transition state theory which admits greater freedom for the proton to explore phase space gives result in better agreement with experiment than the alternative which is based on fixed centroid calculations of the free energy barrier. We also find results in better agreement compared to recent centroid molecular dynamics (CMD) calculations of the diffusivity which employed a classical interatomic potential rather than our quantum mechanical tight binding theory. In particular we find first that quantum effects persist to higher temperatures than previously thought, and conversely that the low temperature diffusivity is smaller than predicted in CMD calculations and larger than predicted by classical transition state theory. This will have impact on future modeling and simulation of hydrogen trapping and diffusion
    • …
    corecore