7,143 research outputs found

    From process-oriented functional specifications to efficient asynchronous circuits

    Get PDF
    technical reportA methodology for high-level synthesis and performance optimization of asynchronous circuits is described. A specification language called hopCP which is based on a simple extension to classical flow graphs is introduced. The extension involves the addition of expression actions to a flow graph, to model computational aspects of hardware behavior in a purely functional framework. Control and Communication aspects are modeled explicitly just as in Hoare's CSP. A systematic methodology to synthesize asynchronous circuits from hopCP based on the notion of a self-timed block is presented. The compilation methodology based on self-timed blocks coupled with the functional flavor of hop CP gives us the ability to exploit several optimizations like quick return, intra-loop pipelining and speculative evaluation of conditional expressions. The specification language hopCP, the synthesis procedure and the optimizations are illustrated in design of an asynchronous iterative multiplier

    CFSIM: A concurrent compiled-code functional simulator for hopCP

    Get PDF
    Journal ArticleControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal hardware description language 'hopCP'. A feature of hopCP is that it supports communication via asynchronous ports (distributed shared variables writable by exactly one process), in addition to synchronous message passing. We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We discuss a compiled-code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language, and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    hopCP: A concurrent hardware description language

    Get PDF
    Journal ArticlehopCP is a language for the specification, simulation, and synthesis of hardware systems. hopCP captures the behavior of a hardware system by specifying the causal relationships between actions that the system can perform. No specific timing discipline is implied by a hopCP specification. Hence, hopCP specifications can be implemented as synchronous, asynchronous, or mixed synchronous and asynchronous circuits. Salient features of hopCP include nonatomic actions, synchronous and asynchronous styles of value communication, broadcast channels, a purely functional sublanguage to express the computational aspects of hardware behavior, and an efficient tool (called parComp) to infer the composite behavior of a collection of hopCP modules. Operational Semantics of hopCP in terms of labeled transition systems is presented. A few examples are described to illustrate the expressive power of hopCP. A summary of the implementation is also presented

    A multi-paradigm language for reactive synthesis

    Get PDF
    This paper proposes a language for describing reactive synthesis problems that integrates imperative and declarative elements. The semantics is defined in terms of two-player turn-based infinite games with full information. Currently, synthesis tools accept linear temporal logic (LTL) as input, but this description is less structured and does not facilitate the expression of sequential constraints. This motivates the use of a structured programming language to specify synthesis problems. Transition systems and guarded commands serve as imperative constructs, expressed in a syntax based on that of the modeling language Promela. The syntax allows defining which player controls data and control flow, and separating a program into assumptions and guarantees. These notions are necessary for input to game solvers. The integration of imperative and declarative paradigms allows using the paradigm that is most appropriate for expressing each requirement. The declarative part is expressed in the LTL fragment of generalized reactivity(1), which admits efficient synthesis algorithms, extended with past LTL. The implementation translates Promela to input for the Slugs synthesizer and is written in Python. The AMBA AHB bus case study is revisited and synthesized efficiently, identifying the need to reorder binary decision diagrams during strategy construction, in order to prevent the exponential blowup observed in previous work.Comment: In Proceedings SYNT 2015, arXiv:1602.0078

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3

    Automatic synthesis of fast compact self-timed control circuits

    Get PDF
    Journal ArticleWe present a tool called MEAT which has been designed to automatically synthesize transistor level. CMOS, self-timed control circuits. MEAT has been used to specify and synthesize self-timed circuits for a fully self-timed 300,000 transistor communication coprocessor. The design is specified using finite state machines which permit burst-mode inputs. Burst-mode is a limited form of MIC (multiple input change) signalling. The primary goal of MEAT is to produce fast and compact circuits. In order to achieve this goal, MEAT implementations permit timing assumption which can by verifiably supported at the physical implementation level, and result in significant improvements in speed and area of the design. Since MEAT has been used for large designs, we have also been forced to make the algorithms efficient. The result is a tool which is efficient, easy to use by today's hardware designers since the specification is based on the commonly used finite state machine control model, and synthesize CMOS transistor implementations that are self-timed, fast and compact. The paper presents a description of the tool, the nature of the algorithms used, and examples of its use

    Static analysis techniques for the synthesis of efficient asynchronous circuits

    Get PDF
    technical reportIn the context of deriving asynchronous circuits from high-level descriptions, determining whether two actions are potentially concurrent (overlapped execution) or serial (non-overlapped execution) has several advantages. This knowledge can be utilized to efficiently implement shared variables, support speculative guard evaluation, and optimize resources (circuitry) by sharing. In a distributed environment with several concurrent processes, determining whether two actions are potentially concurrent or not, automatically, is often difficult to formulate and computationally expensive. In this paper, we present techniques to overcome these problems. First, we present a tool called parComp which infers the composite behavior of a collection of modules, and then we present an algorithm called conCur to analyze the inferred behavior to detect the seriality of two actions. Simple heuristics are presented for the abstraction of the inferred behavioral descriptions and improving the efficiency of conCur. The algorithms parComp and conCur are illustrated in the hopCP framework and implemented in Standard ML of New Jersey. Execution times of the algorithms are reported on a variety of examples. The results are quite encouraging
    corecore