
Formal Aspects of VLSI Research Group

University of Utah, Department of Computer Science

From Process-Oriented Functional Specifications to Efficient Asyn

chronous Circuits

VENKATESH AKELLA *

GANESH GOPALAKRISHNANt

Dept. of Computer Science

University of Utah

Salt Lake City, Utah 84112

(akella@cs. utah.edu)

(ganesh@bliss.utah.edu)

Keywords: asynchronous circuits, high-level synthesis, performance-directed synthesis

Abstract. A methodology for high-level synthesis and performance optimization of asynchronous circuits

is described. A specification language called hopCP which is based on a simple extension to classical flow

graphs is introduced. The extension involves the addition of expression actions to a flow graph, to model

computational aspects of hardware behavior in a purely functional framework. Control and Communication

aspects are modeled explicitly just as in Hoare's CSP. A systematic methodology to synthesize asynchronous

circuits from hopCP based on the notion of a self-timed block is presented. The compilation methodology

based on self-timed blocks coupled with the functional flavor of hopCP gives us the ability to exploit several

optimizations like quick return, intra-loop pipelining and speculative evaluation of conditional expressions.

The specification language hopCP, the synthesis procedure and the optimizations are illustrated in design of

an asynchronous iterative multiplier.

To Appear in the" Fifth International Conference on VLSI Design", Bangalore I

*Supported in part by University of Utah Graduate Research Fellowship

t Supported in part by NSF Grant MIP-8902558

1

1 Introduction

Asynchronous circuits which are based on a explicit request-acknowledge protocol have the

following advantages: (i) absence of a global clocking signal and the associated problems

of reliable (skewless for example) clock distribution across large les (ii) ability to design

locally synchronous and globally asynchronous circuits which help retain the advantages of

synchronous synthesis (eg: no handshake overhead) within the local subsystems and could

have performance gains over purely synchronous circuits and (iii) ability to derive average

case performance instead of worst-case performance from a circuit, because the design is not

constrained by the worst case delays of constituent modules unlike in a synchronous design.

In an asynchronous circuit the constituent modules can function at a rate governed strictly

by local delays.

These advantages have revived the interest in synthesis of asynchronous circuits recently

[8, 4]. In the next section we will give a very brief introduction to our specification notation

hopep (details are presented in [1]). We then briefly introduce action-refinement, which

is our technique to transform hopep descriptions into asynchronous hardware. Finally, we

describe several high-level optimizations that can be performed to improve the efficiency of

our circuits. We illustrate our ideas on the specification driven design of an asynchronous

iterative multiplier.

2 Overview of the Proposed Approach

We take the behavioral specification in hopep, and translate them into a hypergraph (petri

net) notation called hopep Flow Graph (HFG). This is the intermediate representation for

our work. The implementation of a hopep specification involves refining the actions in a

HFG into an interconnection of primitive asynchronous circuit blocks. Resource allocation is

incorporated into the refinement rules. Data Flow analysis techniques are then used to discover

optimizations. We consider three specific optimizations: pipeiining, relaxing synchronization

requirements, and speculative evaluation of conditional expressions.

2 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

2.1 The language hopCP

hopCP specification takes a sequence domain view of hardware where the behavior of a

system is captured by the causal relationships between a set of actions. Actions in hopCP

could denote control, value communication, and computation. Computation is captured by

an expression in a simple first order functional language. Functional languages which are ref

erential transparent and free of side-effects are appropriate to describe computational aspects

because of their inherent parallelism (which means parallelism need not be extracted from

sequential descriptions as in conventional imperative HDLs like ISPS, VHDL, Hardware C

etc.) In addition absence of side-effects leads to elegant formal verification techniques too.

Thus hopCP enables us to integrate a process-oriented view of hardware useful in specifying

synchronization and value communication with a functional (or abstract datatype) view of

hardware which is elegant to capture computational aspects of hardware. The integrated view

is the hopCP Flow Graph or HFG. However, hopCP differs from conventional process calculi

like CSP [5] and CCS in that actions could be nonatomic (temporally refinable). This gives us

the ability to model (and reason about) a hardware system at different levels of timing in the

same specification formalism. It also leads to a simple and intuitive synthesis procedure based

on refining the actions. The specification formalism does not prescribe any specific timing

discipline. The designer is free to adhere to any timing discipline like speed independent,

delay-insensitive, transition signaling, level-based signaling etc. [8] during the synthesis, as

long as it does not violate the causal relationship between the actions.

We will introduce the language with the specification of an iterative multiplier in hopCP.

The details of the language and its operational semantics can be found in [1]. Though this is a

very simple example it is representative of a wide class of iterative algorithms one encounters

in an application like signal processing. The structural specification of the multiplier is a

module defined as: (MULT, {a?,b?,c!}) where MULT is the behavioral specification (HFG)

and a?, b? are the input ports (communication channels) while c! is an output port. The

behavioral description is given by the user through the following hopCP program which is

then compiled into its corresponding HFG:

MU LT ¢:: a?p, b?q '"'-+ c! multiply(p, q, 0) '"'-+ MU LT where

fun multiply x y z = if (y = 0) then z

else case (odd y)

true * multiply x (y-l)(z+x)

false * multiply 2*x (y div 2) z;

3

Here, a?p is an input action, c!multiply(p, q, 0) is an output action and ~ captures the

sequencing between actions (a?p, b?q) and c!multiply(p, q, 0). The comma "," in the action

(a?p, b?q) denotes that the input actions a?p and b?q can proceed concurrently. MU LT re

ceives two values p and q from its input ports a? and b? respectively and outputs multiply(p, q, 0).

Also note that the actual computation involved in the iterative multiplier is elegantly captured

by a tail recursive functional program. The initial translation of the behavioral description

into a HFG is shown in figure 1. The symbols depicting the HFGs can be interpreted as fol

lows: The circles denote control states and the horizontal lines denote actions (control, data or

expression) The double horizontal lines denote conditional expression actions. The arguments

in square brackets annotating a state represent the internal datapath state of the module.

2.2 Action Refinement Based Compilation Strategy

In this section we present a brief summary of our compilation strategy. Details can be found

in [2]. The compilation of hopep specifications into asynchronous circuits involves deriving

implementation for every action in the corresponding HFG. We have three action categories

in hopep: control actions which denote synchronization, data actions which capture syn

chronization plus value communication and expression actions which capture computation.

Every action in hopep is implemented by an circuit-abstraction called an action-block. An

action-block is a piece of hardware (implementing a given action) characterized by an explicit

initiate and complete signal. There are three types of action-blocks: (i) primitive action-blocks

denote leaf cells of the compiler like the C element, MERGE element, REGISTER (ii) pred

icate action-blocks are circuit elements that implement conditional expressions (iii) function

action-blocks which implement standard functions like add, subtract, shift etc.

The compilation scheme essentially involves rewriting every action using the following action-

lllustrating Refinements of Actions in Iterative Multiplier Specification

I Figure 11

I Figure 31

-,-

o

a?p,b?q

[p,q]

c!multiply(p,q,O)

o ("

,
I

o
? b? a.p, .q

[p,q]

multiply(p,q,O) I

[multiply. RES] I

c!multiply.RES !

c! rvw H- i P J 1 (p, tt, 0)
o I Figure 21

/

I

[p,q]

- - - - - --
X:=p, y:=q, z:=O \

I

[X,y,z];/ ~~ .. " . ()
I I ~ fHUJ-A.i..p1d l.p .. 't-P

./ / / zero (y) I I ~ (~G----'
I s3 odd(y) \,

I

/ multiply.RES:= z
\

- - _/ s2 1

[mulitply.RES] I

I

/

I
\ [x,y,z]

....

\.

x := 2*x, "'
\

Y := y div 2)

I
[x,y,z]

/

--

4 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

grammar.

Act ::= prim_act 1 Act, Act 1 Act -I- Act 1 Act I Act

where, Act is the set of possible actions (control, data or expression) in hopCP.

The control and data actions are directly implemented by rewriting using the above action

grammar. The expression actions are first translated into expressions in a first order untyped

A-calculus and then implemented by rewriting the resultant graphs. We use the standard

asynchronous modules like C, MERGE, CALL, REGISTER, SELECT, ATS, CAL etc.

found in literature [3, 8, 6] to implement prim_act category of ~.ctions. We also designed a

few macromodules like AMUX (asynchronous multiplexer), CBR (call-with-boolean-result)

ourselves using these primitives, to suit our compilation. We use transition signaling with the

data-bundling assumption which is advocated in [8].

Our compilation scheme parallels the conventional high-level synthesis algorithms [7] except

that it does not have explicit control-step scheduling since we are in a asynchronous framework

(which has distributed control). Resource allocation is built into the refinement rules. The

compilation involves performing realizability checks (absence of deadlock, hazards) on the

HFG and preliminary local optimizations like operator strength reduction, local load-store

optimizations and then a series of transformations using the action-grammar till we reach a

Normal Form HFG or NHFG. A NHFG has all its actions as primitive actions (which can be

directly implemented using our primitive modules and macromodules).

A few steps of the transformation of the HFG in figure 1 is shown in figures 2 and 3. Figure 2

highlights the refinement c!mulitiply(p, q, 0) ==> ((multiply(p, q, 0) -I- c!multiply.RES)).

Figure 3 shows the decomposition of the expression action multiply(p, q, 0) which involves

evaluating the arguments of the expression action, loading the argument registers of the cor

responding expression action block and then evaluating the body of the expression. The

evaluation strategy adopted in our decomposition corresponds to applicative 1 evaluation or

der. The final asynchronous circuit (not shown to conserve space) consists of one module

to implement odd/zero function (OZ), one adder ALU, one decrementer ALU, two asyn

chronous multiplexers, two asynchronous registers to hold the arguments, one asynchronous

lOther evaluation strategies like normal-order and lazy-evaluation can be also be used but they would

result in tradeoffs in area (resources) and time (length of critical path)

(zero(y), oddly))

oz

in it exit

(zero(y), oddly))

4 I--OZ l!;; ..
j~

1r
in i t exit

(zero(y), oddly))

~ I--OZ z:::

j~

1 r

in it exit

(x:- 2·x, :- div 2)

SHIFTER

AUJ

(z:-z+x)

(dec (y))

.. YSHIFTER r--+ XSHIFTER

(y :-y div2) (x :-2·x)

.. AUJ ..
(z:-z+x)

--.. [E) ..

(dec (y))

.. YSHIFTER ~ct
(y :-y div2)

.. ALU -
[z:-z+x)

C

• [E) ..

[dec (y))

Figur~ 4

~

Figure 5

[x :- 2·x)

Figure 6

5

register to hold the result, one shifter SHIFTER to implement the left and right shift func

tions, four CALL modules to implement sequencing and one CBR module to implement the

sharing of the OZ module

2.3 Performance Optimization of Asynchronous Circuits

Due to the absence of global clocking and emphasis on local communication, severalopti

mizations can be performed to augment the efficiency of asynchronous circuits. We illustrate

three such optimizations on the iterative multiplier example. Figure 4 is the flow diagram of

the datapath of the circuit. It denotes the implementation of the p'aths (s --+ s6 --+ s4 --+ s)

and (s --+ s6 --+ s5 --+ s) in the HFG shown in figure 3. The datapath modules in the flow

diagram are annotated with the expression actions (from figure 3) that they implement. Anal

ysis of this flow diagram reveals the optimizations discussed in the rest of this section. These

optimizations are fairly general and are applicable to a wide class of asynchronous circuits.

Pipelining via Loop Unfolding

Pipelining is achieved by starting the (i + 1)st iteration of a computation before the ith

iteration is complete. Operations x := 2 * x and y := y div 2 (from figure 3) are implemented

using the same SHIFTER module which results in the loop around the SHIFTER module

in figure 4. This loop is unfolded in figure 5 by replacing SHIFTER by XSHIFTER and

YSHIFTER which implement x := 2 * x and y := y div 2 respectively. We notice (from

figure 5) that the completion signal from the XSHIFTER initiates the next invocation of

the multiplier computation. However, we find that the first action in the mulitplier compu

tation performed by OZ module needs only the value of y, hence it can be initiated with the

completion signal of YSHIFTER itself, in parallel with the XSHIFTER. This is possible

because the actions implemented by XSHIFTER and OZ module are data independent. The

resultant transformation is sketched in figure 6.

Relaxing Synchronization Requirements

Figure 6 depicts a synchronization (indicated by the C element) after the decrement opera

tion (in the DEC module) and the add operation (in the ALU module). The next invocation

of the multiplier loop will not take place unless both these operations are completed. This

6 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

synchronization is a performance penalty because the absolute time taken by the decrement

operation is significantly smaller than the time taken by the add operation (because add has

to fetch two operands while decrement has to fetch only one operand). This penalty can be

avoided by relaxing the synchronization requirement (or delaying the synchronization) with

out violating the data dependecies. One way of doing it in our example is to initiate the OZ

action with the completion signal of the DEC module and synchronizing with the consumer

of the value produced by the AL U module.

Speculative Evaluation of Conditionals

Finally, we will illustrate how we could employ speculative evaluation to optimize our cir

cuits. Figure 7 shows the conditional dataflow in our multiplier example. Actions at and a2

denote the boolean expression actions (also known as guards), while a3, a4, a5 denote the corre

sponding next actions depending on the values of the guards. Our refinement procedure would

implement it as shown in figure 8, where guards at and a2 are evaluated sequentially. (a2 is

not evaluated if at evaluates to true). Figure 9 shows the implementation which speculatively

evaluates a2 in parallel with at. The result of a2 is discarded (using the CAL component) if

at is true. This optimization can be very useful in asynchronous instruction pipelines, where

the actions at, a2 denote conditional branches. Optimizations such as this are possible in

the hopCP framework because of the referential transparency in the underlying functional

language. Speculative evaluation becomes very expensive and complicated with imperative

specification languages.

Implementation Details

We developed a compiler and a functional simulator for the hopCP specifications. The

simulator is generated by translating HFGs into Concurrent ML source code, and executing

it directly in the Standard ML environment. This enables us to simulate concurrency and

detect errors like deadlock and synchronization failure during simulation. Work is underway

to automate action-refinement and implement the asynchronous circuits in a FPGA (field

programmable gate array).

Illustrating Speculative Evaluation Optimization

y :U

F (at)
F

odd y

T (a2)
F T T F

(a.)

'Figure 71

l . 'Figure 81
I

y=O
(ad

odd y
(a2)

T F

F 2xl CAL

T I Figure 9'

7

3 Main Contributions and Significance of the Work

There are two main contributions in this paper. Firstly we have shown how the ideas of con

ventional (synchronous) high-level synthesis work can be modified to synthesize asynchronous

circuits. Secondly, we contribute to the area of performance-directed synthesis of asynchronous

circuits. The only existing work in this area of which we are aware is that of Brunvand [3] but

it only employs peephole optimizations to remove local redundancies. If asynchronolJ.s circuits

are to become practical and popular, it is very important to address global optimization and

performance issues in a specification-driven design environment. Our work can be interpreted

as an initial effort in that direction.

References

1. Venkatesh Akella. hopCP: Language Definition, Semantics and Examples. Tech Report UUCS-

91-XX, Dept. of Computer Science, University of Utah.

2. Venkatesh Akella and Ganesh Gopalakrishnan. Hierarchical Action Refinement: A Methodology

for Compiling Asynchronous Circuits from a Concurrent HDL. Tenth International Symposium

on Computer Hardware Description Languages and their Applications, Marseille, France, April

1991.

3. Erik Brunvand and Robert F. Sproull. Translating Concurrent Communicating Programs into

Delay-Insensitive Circuits. In International Conference on Computer-aided Design, ICCAD 89,

November 1989.

4. Ganesh Gopalakrishnan and Prabhat Jain. Some Recent Asynchronous System Design Method

ologies. Technical Report UU-CS-TR-90-016, Dept. of Computer Science, University of Utah.

(Submitted to the ACM Computing Surveys).

5. C. A. R. Hoare. Communicating Sequential Processes. Published by Prentice-Hall International

Series in Computer Science, 1985.

6. Robert M. Keller. Towards a Theory of Universal Speed-Independent Modules. IEEE Transac

tions on Computers, C-23(1):21-33, January 1974.

7. Michael C. McFarland, Alice C. Parker, and Raul Camposano. The High-Level Synthesis of

Digital Systems. In Proceedings of the IEEE, pages 301-317, February 1990.

B VENKATESH AKELLA, GANESH GOPALAKRISHNAN

8. Ivan Sutherland. Micropipelines. Communications of the ACM, June 1989. The 1988 ACM

Turing Award Lecture.

