8,223 research outputs found

    Serializing the Parallelism in Parallel Communicating Pushdown Automata Systems

    Full text link
    We consider parallel communicating pushdown automata systems (PCPA) and define a property called known communication for it. We use this property to prove that the power of a variant of PCPA, called returning centralized parallel communicating pushdown automata (RCPCPA), is equivalent to that of multi-head pushdown automata. The above result presents a new sub-class of returning parallel communicating pushdown automata systems (RPCPA) called simple-RPCPA and we show that it can be written as a finite intersection of multi-head pushdown automata systems

    Analyzing Timed Systems Using Tree Automata

    Full text link
    Timed systems, such as timed automata, are usually analyzed using their operational semantics on timed words. The classical region abstraction for timed automata reduces them to (untimed) finite state automata with the same time-abstract properties, such as state reachability. We propose a new technique to analyze such timed systems using finite tree automata instead of finite word automata. The main idea is to consider timed behaviors as graphs with matching edges capturing timing constraints. When a family of graphs has bounded tree-width, they can be interpreted in trees and MSO-definable properties of such graphs can be checked using tree automata. The technique is quite general and applies to many timed systems. In this paper, as an example, we develop the technique on timed pushdown systems, which have recently received considerable attention. Further, we also demonstrate how we can use it on timed automata and timed multi-stack pushdown systems (with boundedness restrictions)

    Revisiting Underapproximate Reachability for Multipushdown Systems

    Full text link
    Boolean programs with multiple recursive threads can be captured as pushdown automata with multiple stacks. This model is Turing complete, and hence, one is often interested in analyzing a restricted class that still captures useful behaviors. In this paper, we propose a new class of bounded under approximations for multi-pushdown systems, which subsumes most existing classes. We develop an efficient algorithm for solving the under-approximate reachability problem, which is based on efficient fix-point computations. We implement it in our tool BHIM and illustrate its applicability by generating a set of relevant benchmarks and examining its performance. As an additional takeaway, BHIM solves the binary reachability problem in pushdown automata. To show the versatility of our approach, we then extend our algorithm to the timed setting and provide the first implementation that can handle timed multi-pushdown automata with closed guards.Comment: 52 pages, Conference TACAS 202

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    An Experiment in Ping-Pong Protocol Verification by Nondeterministic Pushdown Automata

    Get PDF
    An experiment is described that confirms the security of a well-studied class of cryptographic protocols (Dolev-Yao intruder model) can be verified by two-way nondeterministic pushdown automata (2NPDA). A nondeterministic pushdown program checks whether the intersection of a regular language (the protocol to verify) and a given Dyck language containing all canceling words is empty. If it is not, an intruder can reveal secret messages sent between trusted users. The verification is guaranteed to terminate in cubic time at most on a 2NPDA-simulator. The interpretive approach used in this experiment simplifies the verification, by separating the nondeterministic pushdown logic and program control, and makes it more predictable. We describe the interpretive approach and the known transformational solutions, and show they share interesting features. Also noteworthy is how abstract results from automata theory can solve practical problems by programming language means.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866
    corecore