716 research outputs found

    The Finite Element Method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation

    Get PDF
    We consider the time-dependent Gross-Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method. We analyze a mass conserving Crank-Nicolson-type discretization and prove corresponding a priori error estimates with respect to the maximum norm in time and the L2L^2- and energy-norm in space. The estimates show that we obtain optimal convergence rates under the assumption of additional regularity for the solution to the Gross-Pitaevskii equation. We demonstrate the performance of the method in numerical experiments

    Chebyshev polynomial filtered subspace iteration in the Discontinuous Galerkin method for large-scale electronic structure calculations

    Full text link
    The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory (DFT) in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics, and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) can be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALBs requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale two-dimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. Employing 55,296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8,586 atoms is 90 seconds, and the time for a graphene sheet containing 11,520 atoms is 75 seconds.Comment: Submitted to The Journal of Chemical Physic

    Multiscale methods for evolution problems

    Get PDF
    In this thesis we develop and analyze generalized finite element methods for time-dependent partial differential equations (PDEs). The focus lies on equations with rapidly varying coefficients, for which the classical finite element method is insufficient, as it requires a mesh fine enough to resolve the data. The framework for the novel methods are based on the localized orthogonal decomposition (LOD) technique. The main idea of this method is to construct a modified finite element space whose basis functions contain information about the variations in the coefficients, hence yielding better approximation properties. At first, the localized orthogonal decomposition framework is extended to the strongly damped wave equation, where two different highly varying coefficients are present (Paper~I). The dependency of the solution on the different coefficients vary with time, which the proposed method accounts for automatically. Then we consider a parabolic equation where the diffusion is rapidly varying in both time and space (Paper~II). Here, the framework is extended so that the modified finite element space uses space-time basis functions that contain the information of the diffusion coefficient. Furthermore, we study wave propagation problems posed on spatial networks (Paper~III). Such systems are characterized by a matrix with large variations inherited from the underlying network. For this purpose, an LOD based approach adapted to general matrix systems is considered. Finally, we analyze the framework for a parabolic stochastic PDE with multiscale characteristics (Paper~IV). In all papers we prove error estimates for the methods, and confirm the theoretical findings with numerical examples

    A block Krylov subspace time-exact solution method for linear ODE systems

    Get PDF
    We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form y=Ay+g(t)y'=-Ay + g(t) and y=Ay+g(t)y''=-Ay + g(t), where y(t)y(t) is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of the source term g(t)g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a special residual-based block Krylov subspace method. The accuracy of the method is only restricted by the accuracy of the piecewise polynomial approximation and by the error of the block Krylov process. Since both errors can, in principle, be made arbitrarily small, this yields, at some costs, a time-exact method. Numerical experiments are presented to demonstrate efficiency of the new method, as compared to an exponential time integrator with Krylov subspace matrix function evaluations
    corecore