5,485 research outputs found

    Parametric and Nonparametric Volatility Measurement

    Get PDF
    Volatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.

    Parametric and Nonparametric Volatility Measurement

    Get PDF
    Volatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.

    A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations

    Get PDF
    We extend the important idea of range-based volatility estimation to the multivariate case. In particular, we propose a range-based covariance estimator that is motivated by financial economic considerations (the absence of arbitrage), in addition to statistical considerations. We show that, unlike other univariate and multivariate volatility estimators, the range-based estimator is highly efficient yet robust to market microstructure noise arising from bid-ask bounce and asynchronous trading. Finally, we provide an empirical example illustrating the value of the high-frequency sample path information contained in the range-based estimates in a multivariate GARCH framework.Range-based estimation, volatility, covariance, correlation, absence of arbitrage, exchange rates, stock returns, bond returns, bid-ask bounce, asynchronous trading

    Applied Computational Intelligence for finance and economics

    Get PDF
    This article introduces some relevant research works on computational intelligence applied to finance and economics. The objective is to offer an appropriate context and a starting point for those who are new to computational intelligence in finance and economics and to give an overview of the most recent works. A classification with five different main areas is presented. Those areas are related with different applications of the most modern computational intelligence techniques showing a new perspective for approaching finance and economics problems. Each research area is described with several works and applications. Finally, a review of the research works selected for this special issue is given.Publicad

    A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations

    Get PDF
    We extend range-based volatility estimation to the multivariate case. In particular, we propose a range-based covariance estimator motivated by a key financial economic consideration, the absence of arbitrage, in addition to statistical considerations. We show that this estimator is highly efficient yet robust to market microstructure noise arising from bid-ask bounce and asynchronous trading.Range-based estimation, volatility, covariance, correlation, absence of arbitrage, exchange rates, stock returns, bond returns, bid-ask bounce, asynchronous trading

    A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations

    Get PDF
    We extend range-based volatility estimation to the multivariate case. In particular, we propose a range-based covariance estimator motivated by a key financial economic consideration, the absence of arbitrage, in addition to statistical considerations. We show that this estimator is highly efficient yet robust to market microstructure noise arising from bid-ask bounce and asynchronous trading.
    corecore