1,043 research outputs found

    A Mining-Based Compression Approach for Constraint Satisfaction Problems

    Full text link
    In this paper, we propose an extension of our Mining for SAT framework to Constraint satisfaction Problem (CSP). We consider n-ary extensional constraints (table constraints). Our approach aims to reduce the size of the CSP by exploiting the structure of the constraints graph and of its associated microstructure. More precisely, we apply itemset mining techniques to search for closed frequent itemsets on these two representation. Using Tseitin extension, we rewrite the whole CSP to another compressed CSP equivalent with respect to satisfiability. Our approach contrast with previous proposed approach by Katsirelos and Walsh, as we do not change the structure of the constraints.Comment: arXiv admin note: substantial text overlap with arXiv:1304.441

    Learning Tree Patterns from Example Graphs

    Get PDF
    This paper investigates the problem of learning tree patterns that return nodes with a given set of labels, from example graphs provided by the user. Example graphs are annotated by the user as being either positive or negative. The goal is then to determine whether there exists a tree pattern returning tuples of nodes with the given labels in each of the positive examples, but in none of the negative examples, and, furthermore, to find one such pattern if it exists. These are called the satisfiability and learning problems, respectively. This paper thoroughly investigates the satisfiability and learning problems in a variety of settings. In particular, we consider example sets that (1) may contain only positive examples, or both positive and negative examples, (2) may contain directed or undirected graphs, and (3) may have multiple occurrences of labels or be uniquely labeled (to some degree). In addition, we consider tree patterns of different types that can allow, or prohibit, wildcard labeled nodes and descendant edges. We also consider two different semantics for mapping tree patterns to graphs. The complexity of satisfiability is determined for the different combinations of settings. For cases in which satisfiability is polynomial, it is also shown that learning is polynomial (This is non-trivial as satisfying patterns may be exponential in size). Finally, the minimal learning problem, i.e., that of finding a minimal-sized satisfying pattern, is studied for cases in which satisfiability is polynomial

    Learning Character Strings via Mastermind Queries, with a Case Study Involving mtDNA

    Full text link
    We study the degree to which a character string, QQ, leaks details about itself any time it engages in comparison protocols with a strings provided by a querier, Bob, even if those protocols are cryptographically guaranteed to produce no additional information other than the scores that assess the degree to which QQ matches strings offered by Bob. We show that such scenarios allow Bob to play variants of the game of Mastermind with QQ so as to learn the complete identity of QQ. We show that there are a number of efficient implementations for Bob to employ in these Mastermind attacks, depending on knowledge he has about the structure of QQ, which show how quickly he can determine QQ. Indeed, we show that Bob can discover QQ using a number of rounds of test comparisons that is much smaller than the length of QQ, under reasonable assumptions regarding the types of scores that are returned by the cryptographic protocols and whether he can use knowledge about the distribution that QQ comes from. We also provide the results of a case study we performed on a database of mitochondrial DNA, showing the vulnerability of existing real-world DNA data to the Mastermind attack.Comment: Full version of related paper appearing in IEEE Symposium on Security and Privacy 2009, "The Mastermind Attack on Genomic Data." This version corrects the proofs of what are now Theorems 2 and 4
    • …
    corecore