72,959 research outputs found

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    Deep Reinforcement Learning for Resource Allocation in V2V Communications

    Full text link
    In this article, we develop a decentralized resource allocation mechanism for vehicle-to-vehicle (V2V) communication systems based on deep reinforcement learning. Each V2V link is considered as an agent, making its own decisions to find optimal sub-band and power level for transmission. Since the proposed method is decentralized, the global information is not required for each agent to make its decisions, hence the transmission overhead is small. From the simulation results, each agent can learn how to satisfy the V2V constraints while minimizing the interference to vehicle-to-infrastructure (V2I) communications

    Emergence of social networks via direct and indirect reciprocity

    Get PDF
    Many models of social network formation implicitly assume that network properties are static in steady-state. In contrast, actual social networks are highly dynamic: allegiances and collaborations expire and may or may not be renewed at a later date. Moreover, empirical studies show that human social networks are dynamic at the individual level but static at the global level: individuals' degree rankings change considerably over time, whereas network-level metrics such as network diameter and clustering coefficient are relatively stable. There have been some attempts to explain these properties of empirical social networks using agent-based models in which agents play social dilemma games with their immediate neighbours, but can also manipulate their network connections to strategic advantage. However, such models cannot straightforwardly account for reciprocal behaviour based on reputation scores ("indirect reciprocity"), which is known to play an important role in many economic interactions. In order to account for indirect reciprocity, we model the network in a bottom-up fashion: the network emerges from the low-level interactions between agents. By so doing we are able to simultaneously account for the effect of both direct reciprocity (e.g. "tit-for-tat") as well as indirect reciprocity (helping strangers in order to increase one's reputation). This leads to a strategic equilibrium in the frequencies with which strategies are adopted in the population as a whole, but intermittent cycling over different strategies at the level of individual agents, which in turn gives rise to social networks which are dynamic at the individual level but stable at the network level
    corecore