465,869 research outputs found

    Recursive Sketching For Frequency Moments

    Full text link
    In a ground-breaking paper, Indyk and Woodruff (STOC 05) showed how to compute FkF_k (for k>2k>2) in space complexity O(\mbox{\em poly-log}(n,m)\cdot n^{1-\frac2k}), which is optimal up to (large) poly-logarithmic factors in nn and mm, where mm is the length of the stream and nn is the upper bound on the number of distinct elements in a stream. The best known lower bound for large moments is Ω(log(n)n12k)\Omega(\log(n)n^{1-\frac2k}). A follow-up work of Bhuvanagiri, Ganguly, Kesh and Saha (SODA 2006) reduced the poly-logarithmic factors of Indyk and Woodruff to O(log2(m)(logn+logm)n12k)O(\log^2(m)\cdot (\log n+ \log m)\cdot n^{1-{2\over k}}). Further reduction of poly-log factors has been an elusive goal since 2006, when Indyk and Woodruff method seemed to hit a natural "barrier." Using our simple recursive sketch, we provide a different yet simple approach to obtain a O(log(m)log(nm)(loglogn)4n12k)O(\log(m)\log(nm)\cdot (\log\log n)^4\cdot n^{1-{2\over k}}) algorithm for constant ϵ\epsilon (our bound is, in fact, somewhat stronger, where the (loglogn)(\log\log n) term can be replaced by any constant number of log\log iterations instead of just two or three, thus approaching lognlog^*n. Our bound also works for non-constant ϵ\epsilon (for details see the body of the paper). Further, our algorithm requires only 44-wise independence, in contrast to existing methods that use pseudo-random generators for computing large frequency moments

    Element Distinctness, Frequency Moments, and Sliding Windows

    Full text link
    We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. We develop a randomized algorithm for the element distinctness problem whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than previous lower bounds for comparison-based algorithms, showing that element distinctness is strictly easier than sorting for randomized branching programs. This algorithm is based on a new time and space efficient algorithm for finding all collisions of a function f from a finite set to itself that are reachable by iterating f from a given set of starting points. We further show that our element distinctness algorithm can be extended at only a polylogarithmic factor cost to solve the element distinctness problem over sliding windows, where the task is to take an input of length 2n-1 and produce an output for each window of length n, giving n outputs in total. In contrast, we show a time-space tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to compute the number of distinct elements over sliding windows. The same lower bound holds for computing the low-order bit of F_0 and computing any frequency moment F_k, k neq 1. This shows that those frequency moments and the decision problem F_0 mod 2 are strictly harder than element distinctness. We complement this lower bound with a T in O(n^2/S) comparison-based deterministic RAM algorithm for exactly computing F_k over sliding windows, nearly matching both our lower bound for the sliding-window version and the comparison-based lower bounds for the single-window version. We further exhibit a quantum algorithm for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437

    Measuring mass moments and electromagnetic moments of a massive, axisymmetric body, through gravitational waves

    Get PDF
    The electrovacuum around a rotating massive body with electric charge density is described by its multipole moments (mass moments, mass-current moments, electric moments, and magnetic moments). A small uncharged test particle orbiting around such a body moves on geodesics if gravitational radiation is ignored. The waves emitted by the small body carry information about the geometry of the central object, and hence, in principle, we can infer all its multipole moments. Due to its axisymmetry the source is characterized now by four families of scalar multipole moments: its mass moments MlM_l, its mass-current moments SlS_l, its electrical moments ElE_l and its magnetic moments HlH_l, where l=0,1,2,...l=0,1,2,.... Four measurable quantities, the energy emitted by gravitational waves per logarithmic interval of frequency, the precession of the periastron (assuming almost circular orbits), the precession of the orbital plane (assuming almost equatorial orbits), and the number of cycles emitted per logarithmic interval of frequency, are presented as power series of the newtonian orbital velocity of the test body. The power series coefficients are simple polynomials of the various moments.Comment: Talk given by T. A. A. at Recent Advances in Astronomy and Astrophysics, Lixourion, Kefallinia island, Greece, 8-11 Sep 200

    The quantum complexity of approximating the frequency moments

    Get PDF
    The kk'th frequency moment of a sequence of integers is defined as Fk=jnjkF_k = \sum_j n_j^k, where njn_j is the number of times that jj occurs in the sequence. Here we study the quantum complexity of approximately computing the frequency moments in two settings. In the query complexity setting, we wish to minimise the number of queries to the input used to approximate FkF_k up to relative error ϵ\epsilon. We give quantum algorithms which outperform the best possible classical algorithms up to quadratically. In the multiple-pass streaming setting, we see the elements of the input one at a time, and seek to minimise the amount of storage space, or passes over the data, used to approximate FkF_k. We describe quantum algorithms for F0F_0, F2F_2 and FF_\infty in this model which substantially outperform the best possible classical algorithms in certain parameter regimes.Comment: 22 pages; v3: essentially published versio

    On the theory of microwave absorption by the spin-1/2 Heisenberg-Ising magnet

    Full text link
    We analyze the problem of microwave absorption by the Heisenberg-Ising magnet in terms of shifted moments of the imaginary part of the dynamical susceptibility. When both, the Zeeman field and the wave vector of the incident microwave, are parallel to the anisotropy axis, the first four moments determine the shift of the resonance frequency and the line width in a situation where the frequency is varied for fixed Zeeman field. For the one-dimensional model we can calculate the moments exactly. This provides exact data for the resonance shift and the line width at arbitrary temperatures and magnetic fields. In current ESR experiments the Zeeman field is varied for fixed frequency. We show how in this situation the moments give perturbative results for the resonance shift and for the integrated intensity at small anisotropy as well as an explicit formula connecting the line width with the anisotropy parameter in the high-temperature limit.Comment: 4 page

    Single electron magneto-conductivity of a nondegenerate 2D electron system in a quantizing magnetic field

    Full text link
    We study transport properties of a non-degenerate two-dimensional system of non-interacting electrons in the presence of a quantizing magnetic field and a short-range disorder potential. We show that the low-frequency magnetoconductivity displays a strongly asymmetric peak at a nonzero frequency. The shape of the peak is restored from the calculated 14 spectral moments, the asymptotic form of its high-frequency tail, and the scaling behavior of the conductivity for omega -> 0. We also calculate 10 spectral moments of the cyclotron resonance absorption peak and restore the corresponding (non-singular) frequency dependence using the continuous fraction expansion. Both expansions converge rapidly with increasing number of included moments, and give numerically accurate results throughout the region of interest. We discuss the possibility of experimental observation of the predicted effects for electrons on helium.Comment: RevTeX 3.0, 14 pages, 8 eps figures included with eps
    corecore