20,217 research outputs found

    Decentralized Time-Synchronized Channel Swapping for Ad Hoc Wireless Networks

    Get PDF
    International audienceTime-synchronized channel hopping (TSCH) is currently the most efficient solution for collision-free, interferenceavoiding communications in ad hoc wireless networks, such as wireless sensor networks, vehicular networks, and networks of robots or drones. However, all variants of TSCH require some form of centralized coordination to maintain the time-frequency slotting mechanism. This leads to slow convergence to steady state and moderate time-frequency slot utilization, especially under node churn or mobility. We propose decentralized timesynchronized channel swapping (DT-SCS), a novel protocol for medium access control (MAC) in ad hoc wireless networks. Under the proposed protocol, nodes first converge to synchronous beacon packet transmissions across all available channels at the physical layer, with balanced number of nodes in each channel. This is done by the novel coupling of distributed synchronization and desynchronization mechanisms—which are based on the concept of pulse-coupled oscillators—at the MAC layer. Decentralized channel swapping can then take place via peer-to-peer swap requests/acknowledgments made between concurrent transmitters in neighboring channels. We benchmark the convergence and network throughput of DT-SCS, TSCH and the Efficient Multichannel MAC (EM-MAC) protocol (seen as the state-of-the-art in decentralized, interference-avoiding, multichannel MAC protocols) under simulated packet losses at the MAC layer. Moreover, performance results via a Contikibased deployment on TelosB motes reveal that DT-SCS comprises an excellent candidate for decentralized multichannel MAC layer coordination by providing for: quick convergence to steady state,high bandwidth utilization under interference and hidden nodes,and high connectivity

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Routing efficiency in wireless sensor-actor networks considering semi-automated architecture

    Get PDF
    Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version

    Regulatory and Policy Implications of Emerging Technologies to Spectrum Management

    Get PDF
    This paper provides an overview of the policy implications of technological developments, and how these technologies can accommodate an increased level of market competition. It is based on the work carried out in the SPORT VIEWS (Spectrum Policies and Radio Technologies Viable In Emerging Wireless Societies) research project for the European Commission (FP6)spectrum, new radio technologies, UWB, SDR, cognitive radio, Telecommunications, regulation, Networks, Interconnection

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    • …
    corecore