1,218 research outputs found
Free energies of molecular clusters determined by guided mechanical disassembly
The excess free energy of a molecular cluster is a key quantity in models of the nucleation of droplets from a metastable vapor phase; it is often viewed as the free energy arising from the presence of an interface between the two phases. We show how this quantity can be extracted from simulations of the mechanical disassembly of a cluster using guide particles in molecular dynamics. We disassemble clusters ranging in size from 5 to 27 argonlike Lennard-Jones atoms, thermalized at 60 K, and obtain excess free energies, by means of the Jarzynski equality, that are consistent with previous studies. We only simulate the cluster of interest, in contrast to approaches that require a series of comparisons to be made between clusters differing in size by one molecule. We discuss the advantages and disadvantages of the scheme and how it might be applied to more complex systems
Free energy of formation of clusters of sulphuric acid and water molecules determined by guided disassembly
We evaluate the grand potential of a cluster of two molecular species,
equivalent to its free energy of formation from a binary vapour phase, using a
nonequilibrium molecular dynamics technique where guide particles, each
tethered to a molecule by a harmonic force, move apart to disassemble a cluster
into its components. The mechanical work performed in an ensemble of
trajectories is analysed using the Jarzynski equality to obtain a free energy
of disassembly, a contribution to the cluster grand potential. We study
clusters of sulphuric acid and water at 300 K, using a classical interaction
scheme, and contrast two modes of guided disassembly. In one, the cluster is
broken apart through simple pulling by the guide particles, but we find the
trajectories tend to be mechanically irreversible. In the second approach, the
guide motion and strength of tethering are modified in a way that prises the
cluster apart, a procedure that seems more reversible. We construct a surface
representing the cluster grand potential, and identify a critical cluster for
droplet nucleation under given vapour conditions. We compare the equilibrium
populations of clusters with calculations reported by Henschel et al. [J. Phys.
Chem. A 118, 2599 (2014)] based on optimised quantum chemical structures
Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics
Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study
Recommended from our members
High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier.
Nucleosomes represent mechanical and energetic barriers that RNA Polymerase II (Pol II) must overcome during transcription. A high-resolution description of the barrier topography, its modulation by epigenetic modifications, and their effects on Pol II nucleosome crossing dynamics, is still missing. Here, we obtain topographic and transcriptional (Pol II residence time) maps of canonical, H2A.Z, and monoubiquitinated H2B (uH2B) nucleosomes at near base-pair resolution and accuracy. Pol II crossing dynamics are complex, displaying pauses at specific loci, backtracking, and nucleosome hopping between wrapped states. While H2A.Z widens the barrier, uH2B heightens it, and both modifications greatly lengthen Pol II crossing time. Using the dwell times of Pol II at each nucleosomal position we extract the energetics of the barrier. The orthogonal barrier modifications of H2A.Z and uH2B, and their effects on Pol II dynamics rationalize their observed enrichment in +1 nucleosomes and suggest a mechanism for selective control of gene expression
Statistical-mechanical lattice models for protein-DNA binding in chromatin
Statistical-mechanical lattice models for protein-DNA binding are well
established as a method to describe complex ligand binding equilibriums
measured in vitro with purified DNA and protein components. Recently, a new
field of applications has opened up for this approach since it has become
possible to experimentally quantify genome-wide protein occupancies in relation
to the DNA sequence. In particular, the organization of the eukaryotic genome
by histone proteins into a nucleoprotein complex termed chromatin has been
recognized as a key parameter that controls the access of transcription factors
to the DNA sequence. New approaches have to be developed to derive statistical
mechanical lattice descriptions of chromatin-associated protein-DNA
interactions. Here, we present the theoretical framework for lattice models of
histone-DNA interactions in chromatin and investigate the (competitive) DNA
binding of other chromosomal proteins and transcription factors. The results
have a number of applications for quantitative models for the regulation of
gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J.
Phys.: Cond. Mat
Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces
At the heart of the structured architecture and complex dynamics of
biological systems are specific and timely interactions operated by
biomolecules. In many instances, biomolecular agents are spatially confined to
flexible lipid membranes where, among other functions, they control cell
adhesion, motility and tissue formation. Besides being central to several
biological processes, \emph{multivalent interactions} mediated by reactive
linkers confined to deformable substrates underpin the design of
synthetic-biological platforms and advanced biomimetic materials. Here we
review recent advances on the experimental study and theoretical modelling of a
heterogeneous class of biomimetic systems in which synthetic linkers mediate
multivalent interactions between fluid and deformable colloidal units,
including lipid vesicles and emulsion droplets. Linkers are often prepared from
synthetic DNA nanostructures, enabling full programmability of the
thermodynamic and kinetic properties of their mutual interactions. The coupling
of the statistical effects of multivalent interactions with substrate fluidity
and deformability gives rise to a rich emerging phenomenology that, in the
context of self-assembled soft materials, has been shown to produce exotic
phase behaviour, stimuli-responsiveness, and kinetic programmability of the
self-assembly process. Applications to (synthetic) biology will also be
reviewed.Comment: 63 pages, revie
Reaction Dynamics with Exotic Beams
We review the new possibilities offered by the reaction dynamics of
asymmetric heavy ion collisions, using stable and unstable beams. We show that
it represents a rather unique tool to probe regions of highly Asymmetric
Nuclear Matter () in compressed as well as dilute phases, and to test the
in-medium isovector interaction for high momentum nucleons. The focus is on a
detailed study of the symmetry term of the nuclear Equation of State () in
regions far away from saturation conditions but always under laboratory
controlled conditions.
Thermodynamic properties of are surveyed starting from nonrelativistic
and relativistic effective interactions. In the relativistic case the role of
the isovector scalar -meson is stressed. The qualitative new features
of the liquid-gas phase transition, "diffusive" instability and isospin
distillation, are discussed. The results of ab-initio simulations of n-rich,
n-poor, heavy ion collisions, using stochastic isospin dependent transport
equations, are analysed as a function of beam energy and centrality. The
isospin dynamics plays an important role in all steps of the reaction, from
prompt nucleon emissions to the final fragments. The isospin diffusion is also
of large interest, due to the interplay of asymmetry and density gradients. In
relativistic collisions, the possibility of a direct study of the covariant
structure of the effective nucleon interaction is shown. Results are discussed
for particle production, collective flows and iso-transparency.
Perspectives of further developments of the field, in theory as well as in
experiment, are presented.Comment: 167+5 pages, 77 figures, general revie
Taking into account nucleosomes for predicting gene expression
The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147. bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin. © 2013 Elsevier Inc
Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle
Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin
- …
