Statistical-mechanical lattice models for protein-DNA binding are well
established as a method to describe complex ligand binding equilibriums
measured in vitro with purified DNA and protein components. Recently, a new
field of applications has opened up for this approach since it has become
possible to experimentally quantify genome-wide protein occupancies in relation
to the DNA sequence. In particular, the organization of the eukaryotic genome
by histone proteins into a nucleoprotein complex termed chromatin has been
recognized as a key parameter that controls the access of transcription factors
to the DNA sequence. New approaches have to be developed to derive statistical
mechanical lattice descriptions of chromatin-associated protein-DNA
interactions. Here, we present the theoretical framework for lattice models of
histone-DNA interactions in chromatin and investigate the (competitive) DNA
binding of other chromosomal proteins and transcription factors. The results
have a number of applications for quantitative models for the regulation of
gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J.
Phys.: Cond. Mat