1,081 research outputs found

    Framework for a Perceptive Mobile Network using Joint Communication and Radar Sensing

    Full text link
    In this paper, we develop a framework for a novel perceptive mobile/cellular network that integrates radar sensing function into the mobile communication network. We propose a unified system platform that enables downlink and uplink sensing, sharing the same transmitted signals with communications. We aim to tackle the fundamental sensing parameter estimation problem in perceptive mobile networks, by addressing two key challenges associated with sophisticated mobile signals and rich multipath in mobile networks. To extract sensing parameters from orthogonal frequency division multiple access (OFDMA) and spatial division multiple access (SDMA) communication signals, we propose two approaches to formulate it to problems that can be solved by compressive sensing techniques. Most sensing algorithms have limits on the number of multipath signals for their inputs. To reduce the multipath signals, as well as removing unwanted clutter signals, we propose a background subtraction method based on simple recursive computation, and provide a closed-form expression for performance characterization. The effectiveness of these methods is validated in simulations.Comment: 14 pages, 12 figures, Journal pape

    Perceptive Mobile Network Based on Joint Communication and Radio Sensing

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Radio networks have been evolving from communication-only wireless connectivity to a network for services, which will enable new business models and user experiences for emerging industrial applications. Many of these applications, including automotive, industrial automation, public safety and security tasks, will require information retrieval relating to mobile devices and objects through radio sensing. Radio sensing here refers to the process of information extraction for objects of interest in the surrounding environment that is covered by radio signals. We call the evolutionary mobile network with both communication and radio sensing functions as a perceptive mobile network. Such joint functions can be promoted as one of the core components in future 5G/6G standards. The parametric values regarding moving objects, human movement, and any change in the environment surrounding the user equipment are embedded with the wireless signal and this enables the possibility of using the cellular signal for information extraction. As both wireless communication and radar system exhibit similar receiver front-end architecture at high frequency, it triggers the concepts of joint communication and radio sensing (JCAS) operation. In that circumstance, a unified platform can introduce shared hardware between two functions, which eventually implies reduced size, cost and weight. The main purpose of this doctoral study is to analyse the radio sensing capability of a mobile network and design the framework for joint operation. The thesis aims to design advanced signals and protocols that allow communications and sensing to be better implemented jointly and benefit from each other efficiently. An additional goal is to investigate the existing sensing parameter estimation processes and their suitability in signal processing for JCAS operation. The thesis provides a general framework for the envisioned perceptive mobile networks that enable radio sensing using downlink and uplink mobile signaling, by considering future mobile network architecture and components, practical sophisticated communication signal format, and complicated signal propagation environment. The thesis discusses the required modifications and upgrades to existing mobile networks to facilitate JCAS functionalities. One and multi-dimensional compressive sensing techniques are successfully employed for estimating the parameters of the sensed scene, following the state of the art, by applying orthogonal frequency-division multiplexing (OFDM) based multi-user multiple-input multiple-output (MIMO) signal model. The simulated results presented here demonstrate reasonable performance in radio sensing using perceptive mobile networks. The research works shown in this thesis indicate the feasibility of the perceptive mobile network and provide a way to proceed

    Sensing as a Service in 6G Perceptive Mobile Networks: Architecture, Advances, and the Road Ahead

    Full text link
    Sensing-as-a-service is anticipated to be the core feature of 6G perceptive mobile networks (PMN), where high-precision real-time sensing will become an inherent capability rather than being an auxiliary function as before. With the proliferation of wireless connected devices, resource allocation in terms of the users' specific quality-of-service (QoS) requirements plays a pivotal role to enhance the interference management ability and resource utilization efficiency. In this article, we comprehensively introduce the concept of sensing service in PMN, including the types of tasks, the distinctions/advantages compared to conventional networks, and the definitions of sensing QoS. Subsequently, we provide a unified RA framework in sensing-centric PMN and elaborate on the unique challenges. Furthermore, we present a typical case study named "communication-assisted sensing" and evaluate the performance trade-off between sensing and communication procedure. Finally, we shed light on several open problems and opportunities deserving further investigation in the future

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    Joint Communication and Radar Sensing in 5G Mobile Network by Compressive Sensing

    Full text link
    © 2019 IEEE. There is growing interest in integrating communication and radar sensing into one system. However, very limited results are reported on how to realize sensing using complicated mobile signals when joint communication and radar sensing (JCAS) is applied to mobile networks. This paper studies radar sensing using one-dimension (1D) to 3D compressive sensing (CS) techniques, referring to signals compatible with latest fifth generation (5G) new radio (NR) standard. We demonstrate that radio sensing using both downlink and uplink 5G signals can be realized with reasonable performance using these CS techniques, and highlight the respective advantages and disadvantages of these techniques.

    Sensing as a Service in 6G Perceptive Networks: A Unified Framework for ISAC Resource Allocation

    Full text link
    In the upcoming next-generation (5G-Advanced and 6G) wireless networks, sensing as a service will play a more important role than ever before. Recently, the concept of perceptive network is proposed as a paradigm shift that provides sensing and communication (S&C) services simultaneously. This type of technology is typically referred to as Integrated Sensing and Communications (ISAC). In this paper, we propose the concept of sensing quality of service (QoS) in terms of diverse applications. Specifically, the probability of detection, the Cramer-Rao bound (CRB) for parameter estimation and the posterior CRB for moving target indication are employed to measure the sensing QoS for detection, localization, and tracking, respectively. Then, we establish a unified framework for ISAC resource allocation, where the fairness and the comprehensiveness optimization criteria are considered for the aforementioned sensing services. The proposed schemes can flexibly allocate the limited power and bandwidth resources according to both S&C QoSs. Finally, we study the performance trade-off between S&C services in different resource allocation schemes by numerical simulations

    Multi UAV-enabled Distributed Sensing: Cooperation Orchestration and Detection Protocol

    Full text link
    This paper proposes an unmanned aerial vehicle (UAV)-based distributed sensing framework that uses orthogonal frequency-division multiplexing (OFDM) waveforms to detect the position of a ground target, and UAVs operate in half-duplex mode. A spatial grid approach is proposed, where an specific area in the ground is divided into cells of equal size, then the radar cross-section (RCS) of each cell is jointly estimated by a network of dual-function UAVs. For this purpose, three estimation algorithms are proposed employing the maximum likelihood criterion, and digital beamforming is used for the local signal acquisition at the receive UAVs. It is also considered that the coordination, fusion of sensing data, and central estimation is performed at a certain UAV acting as a fusion center (FC). Monte Carlo simulations are performed to obtain the absolute estimation error of the proposed framework. The results show an improved accuracy and resolution by the proposed framework, if compared to a single monostatic UAV benchmark, due to the distributed approach among the UAVs. It is also evidenced that a reduced overhead is obtained when compared to a general compressive sensing (CS) approach

    Cooperative multiterminal radar and communication: a new paradigm for 6G mobile networks

    Get PDF
    The impending spectrum congestion imposed by the emergence of new bandwidth-thirsty applications may be mitigated by the integration of radar and classic communications functionalities in a common system. Furthermore, the merger of a sensing component into wireless communication networks has raised interest in recent years and it may become a compelling design objective for 6G. This article presents the evolution of the hitherto separate radar and communication systems towards their amalgam known as a joint radar and communication (RADCOM) system. Explicitly, we propose to integrate a radio sensing component into 6G. We consider an ultra-dense network (UDN) scenario relying on an active multistatic radar configuration and on cooperation between the access points across the entire coverage area. The technological trends required to reach a feasible integration, the applications anticipated and the open research challenges are identified, with an emphasis on high-accuracy network synchronization. The successful integration of these technologies would facilitate centimeter-level resolution, hence supporting compelling high-resolution applications for next-generation networks, such as robotic cars and industrial assembly lines.publishe

    Optimal Coordinated Transmit Beamforming for Networked Integrated Sensing and Communications

    Full text link
    This paper studies a multi-antenna networked integrated sensing and communications (ISAC) system, in which a set of multi-antenna base stations (BSs) employ the coordinated transmit beamforming to serve multiple single-antenna communication users (CUs) and perform joint target detection by exploiting the reflected signals simultaneously. To facilitate target sensing, the BSs transmit dedicated sensing signals combined with their information signals. Accordingly, we consider two types of CU receivers with and without the capability of canceling the interference from the dedicated sensing signals, respectively. In addition, we investigate two scenarios with and without time synchronization among the BSs. For the scenario with synchronization, the BSs can exploit the target-reflected signals over both the direct links (BS-to-target-to-originated BS links) and the cross-links (BS-to-target-to-other BSs links) for joint detection, while in the unsynchronized scenario, the BSs can only utilize the target-reflected signals over the direct links. For each scenario under different types of CU receivers, we optimize the coordinated transmit beamforming at the BSs to maximize the minimum detection probability over a particular targeted area, while guaranteeing the required minimum signal-to-interference-plus-noise ratio (SINR) constraints at the CUs. These SINR-constrained detection probability maximization problems are recast as non-convex quadratically constrained quadratic programs (QCQPs), which are then optimally solved via the semi-definite relaxation (SDR) technique.Comment: arXiv admin note: text overlap with arXiv:2211.0108
    corecore