569 research outputs found

    Robust arbitrary-view gait recognition based on 3D partial similarity matching

    Get PDF
    Existing view-invariant gait recognition methods encounter difficulties due to limited number of available gait views and varying conditions during training. This paper proposes gait partial similarity matching that assumes a 3-dimensional (3D) object shares common view surfaces in significantly different views. Detecting such surfaces aids the extraction of gait features from multiple views. 3D parametric body models are morphed by pose and shape deformation from a template model using 2-dimensional (2D) gait silhouette as observation. The gait pose is estimated by a level set energy cost function from silhouettes including incomplete ones. Body shape deformation is achieved via Laplacian deformation energy function associated with inpainting gait silhouettes. Partial gait silhouettes in different views are extracted by gait partial region of interest elements selection and re-projected onto 2D space to construct partial gait energy images. A synthetic database with destination views and multi-linear subspace classifier fused with majority voting are used to achieve arbitrary view gait recognition that is robust to varying conditions. Experimental results on CMU, CASIA B, TUM-IITKGP, AVAMVG and KY4D datasets show the efficacy of the propose method

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    On including quality in applied automatic gait recognition

    No full text
    Many gait recognition approaches use silhouette data. Imperfections in silhouette extraction have a negative effect on the performance of a gait recognition system. In this paper we extend quality metrics for gait recognition and evaluate new ways of using quality to improve a recognition system. We demonstrate use of quality to improve silhouette data and select gait cycles of best quality. The potential of the new approaches has been demonstrated experimentally on a challenging dataset, showing how recognition capability can be dramatically improved. Our practical study also shows that acquiring samples of adequate quality in arbitrary environments is difficult and that including quality analysis can improve performance markedly

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness

    Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation

    Get PDF
    Small sample dataset and two-dimensional (2D) approach are challenges to vision-based abnormal gait behaviour recognition (AGBR). The lack of three-dimensional (3D) structure of the human body causes 2D based methods to be limited in abnormal gait virtual sample generation (VSG). In this paper, 3D AGBR based on VSG and multi-set canonical correlation analysis (3D-AGRBMCCA) is proposed. First, the unstructured point cloud data of gait are obtained by using a structured light sensor. A 3D parametric body model is then deformed to fit the point cloud data, both in shape and posture. The features of point cloud data are then converted to a high-level structured representation of the body. The parametric body model is used for VSG based on the estimated body pose and shape data. Symmetry virtual samples, pose-perturbation virtual samples and various body-shape virtual samples with multi-views are generated to extend the training samples. The spatial-temporal features of the abnormal gait behaviour from different views, body pose and shape parameters are then extracted by convolutional neural network based Long Short-Term Memory model network. These are projected onto a uniform pattern space using deep learning based multi-set canonical correlation analysis. Experiments on four publicly available datasets show the proposed system performs well under various conditions

    Gait Recognition based on Inverse Fast Fourier Transform Gaussian and Enhancement Histogram Oriented of Gradient

    Get PDF
    Gait recognition using the energy image representation of the average silhouette image in one complete cycle becomes a baseline in model-free approaches research. Nevertheless, gait is sensitive to any changes. Up to date in the area of feature extraction, image feature representation method based on the spatial gradient is still lacking in efficiency especially for the covariate case like carrying bag and wearing a coat. Although the use of Histogram of orientation Gradient (HOG) in pedestrian detection is the most effective method, its accuracy is still considered low after testing on covariate dataset. Thus this research proposed a combination of frequency and spatial features based on Inverse Fast Fourier Transform and Histogram of Oriented Gradient (IFFTG-HoG) for gait recognition. It consists of three phases, namely image processing phase, feature extraction phase in the production of a new image representation and the classification. The first phase comprises image binarization process and energy image generation using gait average image in one cycle. In the second phase, the IFFTG-HoG method is used as a features gait extraction after generating energy image. Here, the IFFTG-HoG method has also been improved by using Chebyshev distance to calculate the magnitude of the gradient to increase the rate of recognition accuracy. Lastly, K-Nearest Neighbour (k=NN) classifier with K=1 is employed for individual classification in the third phase. A total of 124 people from CASIA B dataset were tested using the proposed IFTG-HoG method. It performed better in gait individual classification as the value of average accuracy for the standard dataset 96.7%, 93.1% and 99.6%compared to HoG method by 94.1%, 85.9% and 96.2% in order. With similar motivation, we tested on Rempit datasets to recognize motorcycle rider anomaly event and our proposed method also outperforms Dalal Method

    A review of vision-based gait recognition methods for human identification

    Full text link
    Human identification by gait has created a great deal of interest in computer vision community due to its advantage of inconspicuous recognition at a relatively far distance. This paper provides a comprehensive survey of recent developments on gait recognition approaches. The survey emphasizes on three major issues involved in a general gait recognition system, namely gait image representation, feature dimensionality reduction and gait classification. Also, a review of the available public gait datasets is presented. The concluding discussions outline a number of research challenges and provide promising future directions for the field
    • …
    corecore