2,842 research outputs found

    Text-Independent Voice Conversion

    Get PDF
    This thesis deals with text-independent solutions for voice conversion. It first introduces the use of vocal tract length normalization (VTLN) for voice conversion. The presented variants of VTLN allow for easily changing speaker characteristics by means of a few trainable parameters. Furthermore, it is shown how VTLN can be expressed in time domain strongly reducing the computational costs while keeping a high speech quality. The second text-independent voice conversion paradigm is residual prediction. In particular, two proposed techniques, residual smoothing and the application of unit selection, result in essential improvement of both speech quality and voice similarity. In order to apply the well-studied linear transformation paradigm to text-independent voice conversion, two text-independent speech alignment techniques are introduced. One is based on automatic segmentation and mapping of artificial phonetic classes and the other is a completely data-driven approach with unit selection. The latter achieves a performance very similar to the conventional text-dependent approach in terms of speech quality and similarity. It is also successfully applied to cross-language voice conversion. The investigations of this thesis are based on several corpora of three different languages, i.e., English, Spanish, and German. Results are also presented from the multilingual voice conversion evaluation in the framework of the international speech-to-speech translation project TC-Star

    Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale

    Full text link
    Large-scale generative models such as GPT and DALL-E have revolutionized natural language processing and computer vision research. These models not only generate high fidelity text or image outputs, but are also generalists which can solve tasks not explicitly taught. In contrast, speech generative models are still primitive in terms of scale and task generalization. In this paper, we present Voicebox, the most versatile text-guided generative model for speech at scale. Voicebox is a non-autoregressive flow-matching model trained to infill speech, given audio context and text, trained on over 50K hours of speech that are neither filtered nor enhanced. Similar to GPT, Voicebox can perform many different tasks through in-context learning, but is more flexible as it can also condition on future context. Voicebox can be used for mono or cross-lingual zero-shot text-to-speech synthesis, noise removal, content editing, style conversion, and diverse sample generation. In particular, Voicebox outperforms the state-of-the-art zero-shot TTS model VALL-E on both intelligibility (5.9% vs 1.9% word error rates) and audio similarity (0.580 vs 0.681) while being up to 20 times faster. See voicebox.metademolab.com for a demo of the model

    Text-Independent F0 Transformation with Non-Parallel Data for Voice Conversion

    Get PDF
    In voice conversion, frame-level mean and variance normalization is typically used for fundamental frequency (F0) transformation, which is text-independent and requires no parallel training data. Some advanced methods transform pitch contours instead, but require either parallel training data or syllabic annotations. We propose a method which retains the simplicity and text-independence of the frame-level conversion while yielding high-quality conversion. We achieve these goals by (1) introducing a text-independent tri-frame alignment method, (2) including delta features of F0 into Gaussian mixture model (GMM) conversion and (3) reducing the well-known GMM oversmoothing effect by F0 histogram equalization. Our objective and subjective experiments on the CMU Arctic corpus indicate improvements over both the mean/variance normalization and the baseline GMM conversion
    corecore