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Abstract 
     Most of the existing voice conversion methods calculate 
the optimal transformation function from a given set of paired 
acoustic vectors of the source and target speakers. The 
alignment of the phonetically equivalent source and target 
frames is problematic when the training corpus available is 
not parallel, although this is the most realistic situation. The 
alignment task is even more difficult in cross-lingual 
applications because the phoneme sets may be different in the 
involved languages. In this paper, a new iterative alignment 
method based on acoustic distances is proposed. The method 
is shown to be suitable for text-independent and cross-lingual 
voice conversion, and the conversion scores obtained in our 
evaluation experiments are not far from the performance 
achieved by using parallel training corpora. 
 

     Index Terms: speech synthesis, cross-lingual voice 
conversion, alignment, GMM, weighted frequency warping 

1. Introduction 
     The goal of voice conversion systems is to modify the 
voice of a source speaker for it to be perceived as if it was 
uttered by another speaker (target speaker). These systems are 
capable to learn a transformation function from a certain 
amount of training data of the source and target speakers. In 
order to map the source speaker’s acoustic space to the target 
speaker’s acoustic space, it is necessary to have a previous 
knowledge about the source-target correspondence between 
different training units. The process in which this 
correspondence is established is called alignment, and several 
strategies for this task have been proposed for different voice 
conversion systems, depending on the requirements of the 
training method. 
     Although some systems based on mapping codebooks [1] 
or frequency-warping functions [2] try to find a 
correspondence between acoustic classes of the source and 
target speakers, most of the voice conversion systems 
calculate the transformation function from a set of paired 
parameter vectors, whose correspondence is established at 
frame level. If a parallel training corpus is available, it is 
relatively easy to find the correspondence between frames. A 
parallel corpus contains recordings of the same sentences 
uttered by both source and target speakers, so that the 
phonetic content of the paired sentences is the same. In this 
case, the most preferred frame-alignment technique is 
dynamic time-warping (DTW), almost standard for parallel 
corpora [3, 4, 5]. If the orthography and the phonetic 
transcription are known, speaker-dependent hidden Markov 
models (HMM) can also be used to segment the utterances. 
Then, the boundaries of the phonemes or sub-phonemes are 
taken as anchor points, and time-scale linear interpolation [6] 
or DTW [7] is used inside the units to establish the 
correspondence between the source and target vectors. 

     However, in a realistic voice conversion application, only 
non-parallel training corpora are available. Four different 
alignment methods have been used in this situation, and some 
of them can be used in a cross-lingual context: 
- Class mapping [8]. The source and target vectors are 

classified separately in clusters. A first mapping is 
established between the acoustic classes of the source and 
target speakers. Then, the vectors inside each class are 
mean-normalized and the frame alignment is performed by 
finding the nearest neighbour of each source vector in the 
corresponding target class. As the author reports, this 
method does not provide a high-accuracy alignment. 

- Speech recognition [9]. A speech recognizer operating with 
a speaker-independent HMM is used to label all the source 
and target frames with a state index. Given the state 
sequence of one speaker, the alignment procedure consists 
of finding longest matching sub-sequences from the other 
speaker until all the frames are paired. The system operates 
in intra-lingual mode due to the limitation of the recognizer. 

- Unit selection using a TTS system [6, 10]. In some 
applications, a huge database of speech from the source 
speaker is available, so the TTS system can be employed to 
generate the same sentences that have been recorded from 
the target speaker. Thus, a parallel corpus is built from non-
parallel recordings. The main disadvantage is the 
incompatibility with cross-lingual applications and the need 
of a huge database for synthesis. 

- Dynamic programming [11]. Given a set of N source 
vectors {sk}, the dynamic programming technique is used to 
find the sequence of N target vectors {tk} that minimizes the 
following cost function: 
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where d( ) is the acoustic distance between two vectors and 
α is adjusted depending on the relevance of each term. This 
alignment technique allows building a text-independent and 
language-independent system, because the correspondence 
between frames is obtained using acoustic criteria only. 
However, it has two drawbacks: (a) it is very time-
consuming, and (b) if the training databases are large the 
conversion scores decay, because the cost function favours 
the selection of target vectors similar to the source vectors, 
while some other vectors that contain important specific 
characteristics of the target speaker do not appear in the 
sequence {tk} and thus are discarded for the training 
process. 

     Some of the systems found in the literature do not actually 
need an alignment method. Instead, a certain acoustic model 
is estimated from the data of one of the speakers and the 
transformation function is calculated using the information 
provided by the model itself. In [7], acoustic HMMs are 
trained from the parameter vectors of the target speaker, and a 
probabilistic voice transformation function is designed in 
such way that the transformed source vectors give maximum 



likelihood with respect to the model. In [12, 13], a conversion 
function previously trained is fitted to the acoustic data of 
different speakers using adaptation techniques. Our informal 
experiments indicate that the conversion functions trained by 
means of such adaptation methods are less accurate than the 
reference functions obtained from parallel corpora. On the 
other hand, adaptation techniques have also been used in 
HMM-based speech synthesis systems to synthesize speech 
with different voices [14, 15], but at present the quality of the 
speech generated by such systems is limited by the synthesis 
procedure itself. 
     As the problem of aligning frames for a text-independent 
cross-lingual voice conversion system has not been 
completely solved, a new iterative alignment technique based 
on acoustic distances is proposed in section 2. One of the 
advantages of the new method is that all the frames of the 
source and target speakers are considered for the alignment. 
Thus, all the characteristics of the acoustic space of both 
speakers are taken into account. The computational load of 
the method is lower than that of the dynamic programming 
approach. Our experiments based on perceptual tests indicate 
that a voice conversion system trained from cross-lingual 
non-parallel corpora using the proposed aligned method 
achieves approximately the same results than a similar system 
trained from intra-lingual parallel corpora. In section 3, a 
brief description of the voice conversion method used to 
evaluate the system is given. The new alignment method has 
been evaluated in a cross-lingual context, as explained in 
section 4. Finally, the main conclusions are listed in section 5. 

2. The New Alignment Method 
2.1. Description 

     The speech recordings of the source and target speakers 
are analyzed by frames, and the spectral envelope of each 
frame is parameterized. Let us call X={xk}k=1...N the set of 
acoustic parameter vectors of the source speaker, and 
Y={yj}j=1...M those of the target speaker. The alignment is 
carried out as follows: 

1. The transformation function is initialized as 
   ( ) xxF =  (2) 

2. As a first step, a new set of N transformed vectors X’ is 
created by applying the current transformation function 
F to the original parameter vectors of X. 
   ( ) NkxFx kk ...1, ==′  (3) 

3. For each vector x’k in X’, the index p(k) of its closest 
neighbour in Y is found. Similarly, the closest 
neighbour of each vector yj is found in X’, and the 
corresponding index is stored as q(j). 

4. A new version of the transformation function F is 
trained from the paired vectors {xk, yp(k)} and {xq(j), yj}. 
It must be emphasized that the vectors used to train the 
functions are always those of X and not those of X’, 
which were used only to refine the search of the optimal 
pairs. As it can be observed, each vector in X is allowed 
to be paired with more than one vector in Y, and vice 
versa. Only the repeated pairs are eliminated. 

5. Go back to step 2. The process is iterated until 
convergence is reached. 

     The transformation function F can be similar to the one 
used for voice conversion, so that the version of F obtained 
during the last iteration is directly the solution of the whole 
conversion problem. In this work, F is chosen to be a GMM-
based linear transformation [5] because it gives very good 
results in terms of objective acoustic distance between 

converted and target vectors, but any other kind of function 
that minimizes the error of the transformation between the 
aligned vectors can be used instead. At each iteration, the 
parameters {αi, µi, Σi} of a joint gaussian model of m 
components are estimated from the concatenated vector pairs 
{[xT yT]T}. The transformation function is defined by the 
following equations: 
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  (4b, c, d) 
where pi(x) is the probability that a given LSF vector x 
belongs to the ith gaussian component of the model. 
     It is desirable that the parameterization used to obtain the 
vectors of X and Y has good properties for conversion 
purposes. In typical voice conversion systems, different types 
of cepstral coefficients or line spectral frequencies (LSF) are 
usually employed [4, 5]. In this work the alignment has been 
performed using cepstral coefficients because the cepstral 
distance between two vectors is a reliable measure of their 
actual acoustic distance, and this characteristic is important 
for the 3rd step of the method in which the closest neighbour 
of each vector is found. 
     One important advantage of this technique is that all the 
vectors of the source and target speakers are being used to 
train the conversion function, so in principle the similarity 
between converted and target voices is expected to be 
comparable to that of the parallel-training case. 

 
2.2. Convergence of the method 

     Although informal perceptual tests show that the method 
reaches a satisfactory level of alignment, a deeper objective 
study was carried out in order to prove that the alignment 
improves at the end of each iteration. For this purpose, a 
parallel corpus of 100 sentences uttered by four different 
speakers was used. Two of the speakers were male (m1, m2) 
and two were female (f1, f2). The average duration of the 
sentences was approximately 5 seconds. Four different 
conversion directions were considered in the study: m1-m2, 
m2-f1, f1-f2 and f2-m1. The corpus was split into two parts: 
50 sentences were used for non-parallel alignment and 
training of the conversion functions (not taking into 
consideration the fact that they came from a parallel corpus); 
the rest of the sentences were frame-aligned by HMM used as 
a reference. Several conversion functions were sequentially 
trained using an increasing number of alignment iterations. 
Each of the conversion functions was applied to the reference 
source vectors, and the cepstral distance was computed 
between the transformed source vectors and the reference 
target vectors. Finally, new conversion functions were 
obtained from the training utterances considering parallel 
alignments. 
     Figure 1 shows the results of this experiment. For each of 
the four conversion directions, the figure plots the 
accumulated cepstral distance as a function of the number of 
iterations. As it can be seen, the method is consistent and, in 
all the conversion directions, the accumulated cepstral 
distance decreases while the number of iterations increases 
from 1 to 10. In general, the achieved accumulated distance is 
not far from the parallel training case, mainly in intra-gender 
conversion. The case m2-f1 is an exception. Some informal 
experiments have been carried out to check if other types of 
initialization for F(x) at the first step lead to better results. In 



particular, a frequency warping function has been used for the 
first iteration. Although no significant improvements have 
been observed, it is expected that the convergence in cross-
gender voice conversion will be reinforced in future works. 
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Figure 1: Objective measurements of accumulated cepstral 

distance for different number of alignment iterations in intra 
and cross-gender voice conversion. 

 
     Focusing on the convergence criterion, it can be also 
observed that there are not very significant improvements 
from 10 to 25 iterations, while the increment of the 
computational cost is noticeable. In addition, in cross-gender 
voice conversion the performance of the system decays when 
the number of iterations is close to 25. As it is difficult to 
define an objective convergence criterion, it is reasonable to 
consider that the performance of the system is accurate 
enough for 10 alignment iterations. This value has been used 
for the evaluation of the system, detailed in section 4. 

3. The Voice Conversion Method: WFW 
     As it has been explained in the previous section, GMM-
based transformations provide good conversion accuracy 
between acoustic vectors of different speakers, which is a 
good property for our alignment method. However, the 
converted speech has a lower quality because of several 
factors: over-smoothing and broadening of the formants, 
effects of the conversion in the analysis/synthesis system 
(residual, phase spectrum…), etc. Therefore, in real voice 
conversion applications, listeners may prefer other methods 
that do not degrade the quality of the converted synthetic 
speech. In this section a brief description of the WFW voice 
conversion method used for the evaluation of the alignment 
system is given. Although the objective acoustic distance 
between converted and target vectors is higher than that 
obtained by GMM-based systems, the WFW method is 
reported to achieve a better balance between the conversion 
and quality scores when the performance is rated by listeners. 
More detailed information about this method can be found in 
[16]. 
     The speech model assumed for the signals is based on the 
harmonic plus stochastic decomposition, so the frames are 
represented by the fundamental frequency, the amplitudes and 
phases of the sinusoids below 5 KHz, and the LPC 
coefficients of the aperiodic part of the speech frame. Given a 
set of aligned frame pairs, the spectral envelopes are 
calculated from the amplitudes of the harmonics by all-pole 
modeling. A 14th order LSF parameterization is used. An 8th 
order GMM is trained from the joint source-target LSF 

vectors and a linear transformation function like that 
described in (4) is estimated from the model parameters. 
     Instead of using this linear function to convert the frames, 
different frequency-warping functions are estimated for each 
of the acoustic classes given by the GMM. In the conversion 
phase, the frequency warping trajectory for a given frame is 
calculated as a linear combination of them. The weights of the 
linear combination are the probabilities of the current LSF 
vector to belong to the different acoustic classes (4b), which 
are provided by the GMM. The amplitudes and phases of the 
new harmonics are calculated by resampling the warped 
magnitude and phase envelopes. The converted LSF vector 
given by the linear GMM transformation (4a) is calculated, 
and the energy of the warped harmonics is corrected inside 
some fixed frequency bands using the information provided 
by the converted LSF envelope. The stochastic component of 
the voiced frames is predicted from the converted LSF vector 
using a different linear transformation. No conversion is 
performed in the unvoiced frames, because it does not lead to 
significant improvements and it may cause a small loss of 
quality. 
     Concerning the prosody, the applied modification consists 
of linearly transforming the logf0, using the mean and 
standard deviation of the log-normal distribution of f0 
extracted from the training data of the source and target 
speakers. 

4. Cross-lingual Evaluation 
     In the framework of the TC-STAR project, periodical 
evaluations for all the speech-to-speech translation 
technologies are organized. In particular, our system 
participated in the intra-lingual and cross-lingual voice 
conversion evaluations for Spanish and English. TC-STAR 
defined an evaluation protocol and the evaluation was carried 
out by ELDA (Evaluation and Language Resources 
Distribution Agency). Around 200 sentences in Spanish and 
150 in English were recorded from 4 different bilingual 
speakers, two male speakers (m1, m2) and two female 
speakers (f1, f2). The average duration of the sentences was 5 
seconds. Four different conversion directions were evaluated: 
m1-m2, m1-f2, f1-m2 and f1-f2. 75% of the sentences were 
used for the training process and the remaining sentences 
were analyzed, converted and resynthesized in order to test 
the performance of the system. The evaluation was based on 
subjective rating by 20 human judges. All judges were native 
speakers, and none of them was an expert in speech synthesis. 
Two metrics were used in the evaluations: one for rating the 
success of the transformation in achieving the desired speaker 
identification, and one for rating the quality of the converted 
speech. To evaluate the conversion degree, the judges were 
asked to listen to randomly chosen pairs of converted and 
target sentences and they had to decide using a 5-point scale 
if the voices came from completely different speakers (1 
point) or from exactly the same speaker (5 points). The judges 
rated the quality of the transformed sentences using a 5-point 
MOS scale, from bad (1) to excellent (5). Global scores were 
obtained by averaging the different individual scores. Two 
systems were tested: 
- Intra-lingual with parallel training. Spanish utterances of 

both, source and target speakers, were used for training and 
testing. The frame alignment was done with parallel 
training corpus. 

- Cross-lingual Spanish-English. The training data of the 
source speakers were Spanish sentences, and the training 
data of the target speakers were in English. The proposed 



alignment method was used to train the cross-lingual 
conversion function. 

     Table 1 shows the global results of Conversion, Quality 
and their Average. Looking at the results in Table 1, it can be 
noticed that the intra-lingual system and the cross-lingual 
system have similar performances, despite the different 
training conditions. 
     Table 2 shows the Conversion scores for each of the 
conversion directions. Intra-lingual and Cross-lingual 
behaviors are quite similar for each conversion direction. 
Cross-gender conversion and specifically the transformation 
from m1 to f2 is the most problematic in both cases. Notice 
that the transformation from m1 to m2 is even better in the 
cross-lingual case than in the intra-lingual with parallel data 
context. Taking all these facts into account, it can be stated 
that the new frame alignment method proposed in this paper 
is suitable for a text-independent cross-lingual voice 
conversion system. 
 

 Conversion Quality Average 
Intra-lingual 2.75 2.85 2.80 
Cross-lingual 2.63 2.80 2.72 

 
Table 1: Conversion and Quality scores. 

 
Conversion f1-f2 f1-m2 m1-f2 m1-m2 
Intra-lingual 2.9 2.9 2.2 3.0 
Cross-lingual 2.7 2.3 1.7 3.8 

 
Table 2: Conversion scores for different conversion 

directions. 
 
     It must be emphasized that the cross-lingual voice 
conversion system that used the frame alignment method 
described in this paper got the best results in the TC-STAR 
final evaluation among all the evaluated systems. 

5. Conclusions 
     In this paper a new iterative method for frame alignment 
has been proposed. As the only information required is the 
acoustic parameterization of the frames, the method can be 
used to build a text-independent intra- and cross-lingual voice 
conversion system. Our perceptual tests show that the 
performance of a voice conversion system using this method 
to align cross-lingual non-parallel corpora is similar to the 
one achieved using intra-lingual parallel training corpora. 
     Future works will focus on the initialization of the method 
in order to improve the objective and subjective results for 
cross-gender voice conversion. 
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