26 research outputs found

    Fractionally Predictive Spiking Neurons

    Full text link
    Recent experimental work has suggested that the neural firing rate can be interpreted as a fractional derivative, at least when signal variation induces neural adaptation. Here, we show that the actual neural spike-train itself can be considered as the fractional derivative, provided that the neural signal is approximated by a sum of power-law kernels. A simple standard thresholding spiking neuron suffices to carry out such an approximation, given a suitable refractory response. Empirically, we find that the online approximation of signals with a sum of power-law kernels is beneficial for encoding signals with slowly varying components, like long-memory self-similar signals. For such signals, the online power-law kernel approximation typically required less than half the number of spikes for similar SNR as compared to sums of similar but exponentially decaying kernels. As power-law kernels can be accurately approximated using sums or cascades of weighted exponentials, we demonstrate that the corresponding decoding of spike-trains by a receiving neuron allows for natural and transparent temporal signal filtering by tuning the weights of the decoding kernel.Comment: 13 pages, 5 figures, in Advances in Neural Information Processing 201

    SuperSpike: Supervised learning in multi-layer spiking neural networks

    Full text link
    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in-vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in-silico. Here we revisit the problem of supervised learning in temporally coding multi-layer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three factor learning rule capable of training multi-layer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike-time patterns

    Spiking PointNet: Spiking Neural Networks for Point Clouds

    Full text link
    Recently, Spiking Neural Networks (SNNs), enjoying extreme energy efficiency, have drawn much research attention on 2D visual recognition and shown gradually increasing application potential. However, it still remains underexplored whether SNNs can be generalized to 3D recognition. To this end, we present Spiking PointNet in the paper, the first spiking neural model for efficient deep learning on point clouds. We discover that the two huge obstacles limiting the application of SNNs in point clouds are: the intrinsic optimization obstacle of SNNs that impedes the training of a big spiking model with large time steps, and the expensive memory and computation cost of PointNet that makes training a big spiking point model unrealistic. To solve the problems simultaneously, we present a trained-less but learning-more paradigm for Spiking PointNet with theoretical justifications and in-depth experimental analysis. In specific, our Spiking PointNet is trained with only a single time step but can obtain better performance with multiple time steps inference, compared to the one trained directly with multiple time steps. We conduct various experiments on ModelNet10, ModelNet40 to demonstrate the effectiveness of Spiking PointNet. Notably, our Spiking PointNet even can outperform its ANN counterpart, which is rare in the SNN field thus providing a potential research direction for the following work. Moreover, Spiking PointNet shows impressive speedup and storage saving in the training phase.Comment: Accepted by NeurIP

    Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks

    Get PDF
    The emergence of brain-inspired neuromorphic computing as a paradigm for edge AI is motivating the search for high-performance and efficient spiking neural networks to run on this hardware. However, compared to classical neural networks in deep learning, current spiking neural networks lack competitive performance in compelling areas. Here, for sequential and streaming tasks, we demonstrate how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance compared to other spiking neural networks and almost reach or exceed the performance of classical recurrent neural networks (RNNs) while exhibiting sparse activity. From this, we calculate a >>100x energy improvement for our SRNNs over classical RNNs on the harder tasks. To achieve this, we model standard and adaptive multiple-timescale spiking neurons as self-recurrent neural units, and leverage surrogate gradients and auto-differentiation in the PyTorch Deep Learning framework to efficiently implement backpropagation-through-time, including learning of the important spiking neuron parameters to adapt our spiking neurons to the tasks.Comment: 11 pages,5 figure

    Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    Get PDF
    Biological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on adaptive spiking neurons. These spiking neurons efficiently encode information in spike-trains using a form of Asynchronous Pulsed Sigma-Delta coding while homeostatically optimizing their firing rate. In the proposed paradigm of spiking neuron computation, neural adaptation is tightly coupled to synaptic plasticity, to ensure that downstream neurons can correctly decode upstream spiking neurons. We show that this type of network is inherently able to carry out asynchronous and event-driven neural computation, while performing identical to corresponding artificial neural networks (ANNs). In particular, we show that these adaptive spiking neurons can be drop in replacements for ReLU neurons in standard feedforward ANNs comprised of such units. We demonstrate that this can also be successfully applied to a ReLU based deep convolutional neural network for classifying the MNIST dataset. The ASNN thus outperforms current Spiking Neural Networks (SNNs) implementations, while responding (up to) an order of magnitude faster and using an order of magnitude fewer spikes. Additionally, in a streaming setting where frames are continuously classified, we show that the ASNN requires substantially fewer network updates as compared to the corresponding ANN
    corecore