2,545 research outputs found

    A FEM for an optimal control problem of fractional powers of elliptic operators

    Full text link
    We study solution techniques for a linear-quadratic optimal control problem involving fractional powers of elliptic operators. These fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. Thus, we consider an equivalent formulation with a nonuniformly elliptic operator as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We discretize the proposed truncated state equation using first degree tensor product finite elements on anisotropic meshes. For the control problem we analyze two approaches: one that is semi-discrete based on the so-called variational approach, where the control is not discretized, and the other one is fully discrete via the discretization of the control by piecewise constant functions. For both approaches, we derive a priori error estimates with respect to the degrees of freedom. Numerical experiments validate the derived error estimates and reveal a competitive performance of anisotropic over quasi-uniform refinement

    Duality for multiobjective variational control problems with (Φ,ρ)-invexity

    Get PDF
    In this paper, Mond-Weir and Wolfe type duals for multiobjective variational control problems are formulated. Several duality theorems are established relating efficient solutions of the primal and dual multiobjective variational control problems under TeX-invexity. The results generalize a number of duality results previously established for multiobjective variational control problems under other generalized convexity assumptions
    corecore