800 research outputs found

    Simple Causes of Complexity in Hedonic Games

    Full text link
    Hedonic games provide a natural model of coalition formation among self-interested agents. The associated problem of finding stable outcomes in such games has been extensively studied. In this paper, we identify simple conditions on expressivity of hedonic games that are sufficient for the problem of checking whether a given game admits a stable outcome to be computationally hard. Somewhat surprisingly, these conditions are very mild and intuitive. Our results apply to a wide range of stability concepts (core stability, individual stability, Nash stability, etc.) and to many known formalisms for hedonic games (additively separable games, games with W-preferences, fractional hedonic games, etc.), and unify and extend known results for these formalisms. They also have broader applicability: for several classes of hedonic games whose computational complexity has not been explored in prior work, we show that our framework immediately implies a number of hardness results for them.Comment: 7+9 pages, long version of a paper in IJCAI 201

    Strategyproof Mechanisms for Additively Separable Hedonic Games and Fractional Hedonic Games

    Full text link
    Additively separable hedonic games and fractional hedonic games have received considerable attention. They are coalition forming games of selfish agents based on their mutual preferences. Most of the work in the literature characterizes the existence and structure of stable outcomes (i.e., partitions in coalitions), assuming that preferences are given. However, there is little discussion on this assumption. In fact, agents receive different utilities if they belong to different partitions, and thus it is natural for them to declare their preferences strategically in order to maximize their benefit. In this paper we consider strategyproof mechanisms for additively separable hedonic games and fractional hedonic games, that is, partitioning methods without payments such that utility maximizing agents have no incentive to lie about their true preferences. We focus on social welfare maximization and provide several lower and upper bounds on the performance achievable by strategyproof mechanisms for general and specific additive functions. In most of the cases we provide tight or asymptotically tight results. All our mechanisms are simple and can be computed in polynomial time. Moreover, all the lower bounds are unconditional, that is, they do not rely on any computational or complexity assumptions

    Relaxed Core Stability for Hedonic Games with Size-Dependent Utilities

    Get PDF
    We study relationships between different relaxed notions of core stability in hedonic games. In particular, we study (i) q-size core stable outcomes in which no deviating coalition of size at most q exists and (ii) k-improvement core stable outcomes in which no coalition can improve by a factor of more than k. For a large class of hedonic games, including fractional and additively separable hedonic games, we derive upper bounds on the maximum factor by which a coalition of a certain size can improve in a q-size core stable outcome. We further provide asymptotically tight lower bounds for a large class of hedonic games. Finally, our bounds allow us to confirm two conjectures by Fanelli et al. [Angelo Fanelli et al., 2021][IJCAI\u2721] for symmetric fractional hedonic games (S-FHGs): (i) every q-size core stable outcome in an S-FHG is also q/(q-1)-improvement core stable and (ii) the price of anarchy of q-size stability in S-FHGs is precisely 2q/q-1

    Δ\varepsilon-fractional Core Stability in Hedonic Games

    Full text link
    Hedonic Games (HGs) are a classical framework modeling coalition formation of strategic agents guided by their individual preferences. According to these preferences, it is desirable that a coalition structure (i.e. a partition of agents into coalitions) satisfies some form of stability. The most well-known and natural of such notions is arguably core-stability. Informally, a partition is core-stable if no subset of agents would like to deviate by regrouping in a so-called core-blocking coalition. Unfortunately, core-stable partitions seldom exist and even when they do, it is often computationally intractable to find one. To circumvent these problems, we propose the notion of Δ\varepsilon-fractional core-stability, where at most an Δ\varepsilon-fraction of all possible coalitions is allowed to core-block. It turns out that such a relaxation may guarantee both existence and polynomial-time computation. Specifically, we design efficient algorithms returning an Δ\varepsilon-fractional core-stable partition, with Δ\varepsilon exponentially decreasing in the number of agents, for two fundamental classes of HGs: Simple Fractional and Anonymous. From a probabilistic point of view, being the definition of Δ\varepsilon-fractional core equivalent to requiring that uniformly sampled coalitions core-block with probability lower than Δ\varepsilon, we further extend the definition to handle more complex sampling distributions. Along this line, when valuations have to be learned from samples in a PAC-learning fashion, we give positive and negative results on which distributions allow the efficient computation of outcomes that are Δ\varepsilon-fractional core-stable with arbitrarily high confidence.Comment: Accepted as poster at NeurIPS 202

    Precise Complexity of the Core in Dichotomous and Additive Hedonic Games

    Full text link
    Hedonic games provide a general model of coalition formation, in which a set of agents is partitioned into coalitions, with each agent having preferences over which other players are in her coalition. We prove that with additively separable preferences, it is ÎŁ2p\Sigma_2^p-complete to decide whether a core- or strict-core-stable partition exists, extending a result of Woeginger (2013). Our result holds even if valuations are symmetric and non-zero only for a constant number of other agents. We also establish ÎŁ2p\Sigma_2^p-completeness of deciding non-emptiness of the strict core for hedonic games with dichotomous preferences. Such results establish that the core is much less tractable than solution concepts such as individual stability.Comment: ADT-2017, 15 pages in LNCS styl

    Hedonic Games with Graph-restricted Communication

    Full text link
    We study hedonic coalition formation games in which cooperation among the players is restricted by a graph structure: a subset of players can form a coalition if and only if they are connected in the given graph. We investigate the complexity of finding stable outcomes in such games, for several notions of stability. In particular, we provide an efficient algorithm that finds an individually stable partition for an arbitrary hedonic game on an acyclic graph. We also introduce a new stability concept -in-neighbor stability- which is tailored for our setting. We show that the problem of finding an in-neighbor stable outcome admits a polynomial-time algorithm if the underlying graph is a path, but is NP-hard for arbitrary trees even for additively separable hedonic games; for symmetric additively separable games we obtain a PLS-hardness result
    • 

    corecore