64,037 research outputs found

    Self-Assembly of 4-sided Fractals in the Two-handed Tile Assembly Model

    Full text link
    We consider the self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). In particular, we focus our attention on a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpi\'nski carpet). We present a 2HAM system that finitely self-assembles the discrete Sierpi\'nski carpet with scale factor 1. Moreover, the 2HAM system that we give lends itself to being generalized and we describe how this system can be modified to obtain a 2HAM system that finitely self-assembles one of any fractal from an infinite set of fractals which we call 4-sided fractals. The 2HAM systems we give in this paper are the first examples of systems that finitely self-assemble discrete self-similar fractals at scale factor 1 in a purely growth model of self-assembly. Finally, we show that there exists a 3-sided fractal (which is not a tree fractal) that cannot be finitely self-assembled by any 2HAM system

    Explicit Spectral Decimation for a Class of Self--Similar Fractals

    Get PDF
    The method of spectral decimation is applied to an infinite collection of self--similar fractals. The sets considered belong to the class of nested fractals, and are thus very symmetric. An explicit construction is given to obtain formulas for the eigenvalues of the Laplace operator acting on these fractals

    Exact calculations of first-passage quantities on recursive networks

    Full text link
    We present general methods to exactly calculate mean-first passage quantities on self-similar networks defined recursively. In particular, we calculate the mean first-passage time and the splitting probabilities associated to a source and one or several targets; averaged quantities over a given set of sources (e.g., same-connectivity nodes) are also derived. The exact estimate of such quantities highlights the dependency of first-passage processes with respect to the source-target distance, which has recently revealed to be a key parameter to characterize transport in complex media. We explicitly perform calculations for different classes of recursive networks (finitely ramified fractals, scale-free (trans)fractals, non-fractals, mixtures between fractals and non-fractals, non-decimable hierarchical graphs) of arbitrary size. Our approach unifies and significantly extends the available results in the field.Comment: 16 pages, 10 figure

    Exact solution of mean geodesic distance for Vicsek fractals

    Full text link
    The Vicsek fractals are one of the most interesting classes of fractals and the study of their structural properties is important. In this paper, the exact formula for the mean geodesic distance of Vicsek fractals is found. The quantity is computed precisely through the recurrence relations derived from the self-similar structure of the fractals considered. The obtained exact solution exhibits that the mean geodesic distance approximately increases as an exponential function of the number of nodes, with the exponent equal to the reciprocal of the fractal dimension. The closed-form solution is confirmed by extensive numerical calculations.Comment: 4 pages, 3 figure

    On certain families of planar patterns and fractals

    Full text link
    This survey article is dedicated to some families of fractals that were introduced and studied during the last decade, more precisely, families of Sierpi\'nski carpets: limit net sets, generalised Sierpi\'nski carpets and labyrinth fractals. We give a unifying approach of these fractals and several of their topological and geometrical properties, by using the framework of planar patterns.Comment: survey article, 10 pages, 7 figure
    • 

    corecore