38 research outputs found

    Superlattice structures in twisted bilayers of folded graphene

    Get PDF
    The electronic properties of bilayer graphene strongly depend on relative orientation of the two atomic lattices. Whereas Bernal-stacked graphene is most commonly studied, a rotational mismatch between layers opens up a whole new field of rich physics, especially at small interlayer twist. Here we report on magnetotransport measurements on twisted graphene bilayers, prepared by folding of single layers. These reveal a strong dependence on the twist angle, which can be estimated by means of sample geometry. At small rotation, superlattices with a wavelength in the order of 10 nm arise and are observed by friction atomic force microscopy. Magnetotransport measurements in this small-angle regime show the formation of satellite Landau fans. These are attributed to additional Dirac singularities in the band structure and discussed with respect to the wide range of interlayer coupling models

    Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene

    Full text link
    The Hofstadter energy spectrum of twisted bilayer graphene is found to have recursive higher-order topological properties. We demonstrate that higher-order topological insulator (HOTI) phases, characterized by localized corner states, occur as replicas of the original HOTIs to fulfill the self-similarity of the Hofstadter spectrum. We show the existence of the exact flux translational symmetry of twisted bilayer graphene at all commensurate angles. Based on this result, we carefully identify that the original HOTI phase at zero flux is re-entrant at a half-flux periodicity, where the effective twofold rotation is preserved. In addition, numerous replicas of the original HOTIs are found for fluxes without protecting symmetries. Similar to the original HOTIs, replica HOTIs feature both localized corner states and edge-localized real-space topological markers. The replica HOTIs originate from the different interaction scales, namely, intralayer and interlayer couplings, in twisted bilayer graphene. The topological aspect of Hofstadter butterflies revealed in our results highlights symmetry-protected topology in quantum fractals.Comment: 6 pages, 4 figures + Supplemental Materia

    Correlation-driven topological phases in magic-angle twisted bilayer graphene

    Get PDF
    Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron–electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when ±1, ±2 and ±3 electrons occupy each moiré unit cell, and lead to the formation of various correlated phases. Although some phases have been shown to have a non-zero Chern number, the local microscopic properties and topological character of many other phases have not yet been determined. Here we introduce a set of techniques that use scanning tunnelling microscopy to map the topological phases that emerge in MATBG in a finite magnetic field. By following the evolution of the local density of states at the Fermi level with electrostatic doping and magnetic field, we create a local Landau fan diagram that enables us to assign Chern numbers directly to all observed phases. We uncover the existence of six topological phases that arise from integer fillings in finite fields and that originate from a cascade of symmetry-breaking transitions driven by correlations. These topological phases can form only for a small range of twist angles around the magic angle, which further differentiates them from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions, exhibits prominent electron–hole asymmetry, and features an unexpectedly large splitting between zero Landau levels (about 3 to 5 millielectronvolts). Our results show how strong electronic interactions affect the MATBG band structure and lead to correlation-enabled topological phases
    corecore