39,830 research outputs found

    Experimental generalized quantum suppression law in Sylvester interferometers

    Get PDF
    Photonic interference is a key quantum resource for optical quantum computation, and in particular for so-called boson sampling machines. In interferometers with certain symmetries, genuine multiphoton quantum interference effectively suppresses certain sets of events, as in the original Hong-Ou-Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law suitable for random-input experiments in multimode Sylvester interferometers, and verify it experimentally using 4- and 8-mode integrated interferometers. The observed suppression is stronger than what is observed in Fourier interferometers of the same size, and could be relevant to certification of boson sampling machines and other experiments relying on bosonic interference.Comment: 5 pages, 3 figures + 11 pages, 3 figures Supplementary Informatio

    Quantum Noise Correlation Experiments with Ultracold Atoms

    Full text link
    Noise correlation analysis is a detection tool for spatial structures and spatial correlations in the in-trap density distribution of ultracold atoms. In this book chapter, we discuss the implementation, properties and limitations of the method applied to ensembles of ultracold atoms in optical lattices, and describe some instances where it has been applied.Comment: 26 pages, 14 figures - To appear as Chapter 8 in "Quantum gas experiments - exploring many-body states," P. T\"orm\"a, K. Sengstock, eds. (Imperial College Press, to be published 2014

    Optimal photonic indistinguishability tests in multimode networks

    Get PDF
    Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity. Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices. It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources. Here we show that so-called Sylvester interferometers are near-optimal for the task of discriminating the behaviors of distinguishable and indistinguishable photons. We report the first implementations of integrated Sylvester interferometers with 4 and 8 modes with an efficient, scalable and reliable 3D-architecture. We perform two-photon interference experiments capable of identifying indistinguishable photon behaviour with a Bayesian approach using very small data sets. Furthermore, we employ experimentally this new device for the assessment of scattershot Boson Sampling. These results open the way to the application of Sylvester interferometers for the optimal assessment of multiphoton interference experiments.Comment: 9+10 pages, 6+6 figures, added supplementary material, completed and updated bibliograph
    • …
    corecore