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Abstract

Photonic interference is a key quantum resource for optical quantum computation, and in particular
for so-called boson sampling devices. In interferometers with certain symmetries, genuine multi-
photon quantum interference effectively suppresses certain sets of events, as in the original Hong—
Ou—Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled
out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law
suitable for random-input experiments in multimode Sylvester interferometers, and verify it
experimentally using 4- and 8-mode integrated interferometers. The observed suppression occurs for
amuch larger fraction of input—output combinations than what is observed in Fourier interferometers
of the same size, and could be relevant to certification of boson sampling machines and other
experiments relying on bosonic interference, such as quantum simulation and quantum metrology.

1. Introduction

Scalable, general-purpose quantum computers, once developed, will be able to solve problems believed to be
intractable for ordinary computers. Given the significant technological challenges involved, other nearer-term
goals for the field were suggested, such as the creation of quantum machines able to beat classical computers in
particular computational tasks. One such proposal which has drawn much interest is boson sampling [ 1], which
relies on multiphoton interference in a random linear interferometer, and whose output statistics are thought to
be hard to sample classically. Due to bosonic interference, the output of those experiments is distributed
according to the permanents of complex matrices specifying the interferometer’s design, and the permanentisa
function that is notoriously hard to calculate [ 1-3]. This possible path towards a demonstration of quantum
computational supremacy has resulted in strong efforts to realize experimental implementations of such boson
sampling devices [4—-15].

To investigate the factors behind the computational complexity of these devices, different kinds of input
states have been considered. It is known that inputs consisting of distinguishable photons, coherent states, and
antisymmetric (fermionic-like) states all result in classically simulable behavior. On the other hand, photon-
added coherent states [16] and quantum superpositions of coherent states (cat states) [ 17] have been claimed to
yield hard-to-simulate outputs. Partially distinguishable photons seem to yield an intermediate regime
deserving further investigation [18-21]. The effect of losses on simulation complexity was also considered
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[22,23]. Moreover, specific semi-classical states able to reproduce some collective interference effects while
being efficiently simulable have been identified [24].

Other implementations of boson sampling devices serve to improve performance, or were used to discuss
how to certify the correct functioning of the device. So-called scattershot boson sampling devices [12, 25, 26] use
simultaneous pumping of several parametric down-conversion (PDC) sources to result in a random-input
version of the original problem. The main advantage is a greatly enhanced generation rate, compared to a single-
input implementations using the same sources. Other proposals suggest the adoption of squeezed states as a
non-classical resource [27]. While complete certification of large boson sampling devices may turn out to be
impossible, a number of proposals for partial certification were made, capable of comparing the experimental
outcomes against some physically motivated error models [9, 10, 28-34].

As genuine many-particle interference is required for boson sampling, efforts have been directed at
providing stronger evidence of this phenomenon. The simplest such demonstration is the Hong—-Ou—Mandel
(HOM) effect [35]. Generalizations of this effect have been proposed to investigate signatures of interference for
specific input—output combinations of Fourier [11, 24, 36—38] and Sylvester [39] interferometers, and
hypercube graphs [40]. These highly symmetric transformations provide a rich landscape for multi-particle
interference to happen, which is the subject of our analysis.

In this work we discuss and experimentally demonstrate a zero-transmission law for Sylvester
interferometers. As we will see, indistinguishable photons interfere in these devices so that a certain fraction of
all input—output combinations are suppressed. This suggests they may be helpful in identifying multi-photon
interference in random-input, scattershot boson sampling experiments. The zero-transmission law is
demonstrated experimentally in Sylvester interferometers with m = 4 and m = 8 modes, implemented with the
three-dimensional capabilities of femtosecond laser writing technology [41, 42].

2. Suppression law in Sylvester matrices

A suppression law, or equivalently zero-transmission law, is an efficient algorithm predicting that, for a given
interferometer U, specific combinations of input/output states are strictly suppressed due to many-particle
interference. Sylvester matrices are special constructions of Hadamard matrices of dimension m = 27, with p

integer, whose elements are only +1 and —1 and can be defined as H(2?) = H®? where H = G _11) isthe

unnormalized 2 x 2 Hadamard matrix. Sylvester matrices can be equivalently defined recursively as:

ey

H(2) = (H(zpl) H@™H )

HQEY —H@Y

An analytic expression for the (i, j) element of a Sylvester matrix is given by [H (27)];; = (— 1)5®Js, where igand
jparethebinaryrepresentations of i — 1andj — 1respectively, and ® is the bitwise dot product, that is, the sum
modulo 2 of the products of pairs of bits. The associated unitary transformation is a rescaled U" = m~'/2H (m).
When p = 1 we have the simplest Sylvester unitary, describing a symmetric 50:50 beam splitter. The celebrated
HOM effect [35] is a first example of suppression law, as a transition between photons in input modes (1, 2) and
output modes (1, 2) is strictly suppressed. A more general instance of this phenomenon was later identified by
Tichy et al[24, 36], which proposed an efficient way to predict strict suppressions occurring in Fourier
interferometers. This suppression law predicts that, for periodic inputs [43], a large number of output states
corresponds to strictly vanishing scattering amplitudes. The number of input/output pairs that are predicted to
be suppressed by this method is however very small with respect to the total number of states, because only a
small class of input states satisfies the required symmetry properties of periodicity. This makes this protocol
unsuitable in the context of scattershot boson sampling experiments, in which the input state changes randomly
for every event. A different class of unitaries, the so-called Sylvester interferometers, was later considered in [39],
and a new suppression law was derived for these matrices. The suppression law for Sylvester matrices identified
in [39] considers n-photon input states, with n = 29, of the form (1 + nc, ...,n + nc) with0 < ¢ < 2k 1,
injected in 2677 = m-dimensional Sylvester interferometers. It was proven that all outputs whose bitwise sum of
binary-represented mode occupation numbers is not the zero vector are strictly suppressed. This suppression
law only identifies a small subset of all suppressed input—output combinations.

We now introduce a generalized law that identifies a larger number of suppressed input—output
combinations in Sylvester interferometers. We are interested in the transition amplitudes between states of n
photons in 1 modes, and restrict ourselves to the case n < m. An n-photon input configuration is described by
the state vector |r) = |n ... 1), where r;is the number of photons occupying mode i. A general #n-photon input
configuration may be represented also by a mode assignment list (MAL) 7 = (#, %, ..., ,), where 7; specifies
which modes are occupied. As an example, an input state with n = 4and m = 8 with one photon in each of the
first four modes is described by the state vector |r) = |1, 1, 1, 1, 0, 0, 0, 0) and by the MAL 7 = (1, 2, 3, 4).
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Since photons are indistinguishable, the ordering of elements in the MAL is meaningless, and we conventionally
choose the list to be in nondecreasing order. It will be useful to represent this stateasan X p binary matrix (BM)
R, whose ith row is the binary representation of 7; — 1 (padded with zeros on the left so it has length p). Similarly
to MALs, the order of the rows of such BM representation is irrelevant, i.e. if Rand R’ are related only by a
permutation of the rows, they represent the same physical state. We will denote this equivalence relation
between binary matricesas R ~ R’. Let us call N/(R) the matrix obtained by negating each bit in the columns of
Rspecified by alist of indices A. As an example, for m = 8 and n = 4 consider state

|r) =11, 1,1, 1, 0, 0, 0, 0), corresponding to the MAL 7 = (1, 2, 3, 4). Then we have

000 101 111
_l001 (1,3) _ |1 0 0 {123y _ |1 1 0

R 010NR 111NR 101]) &)
011 110 100

Similarly, N2} (R) ~ N3}(R) ~ R, since theyare related to each other by permutations of their rows, whereas
NU(R) represents a different state.

The input—output combinations |[r) — [s)and |s) — |r)are suppressed if some A exists for which the
following two conditions are met.

Condition I. For a given input | r) with BM representation R, check whether R has any subsets of columns A
such that negating those columns of R results in R up to a permutation of the rows:

NAGF) = 7. 3)

Condition II. Consider any output | s) with BM representation Sandany A € A. Ifthe columns A of S contain
an odd number of 1s, the transition from R to S is suppressed:

n

D D Sta=1 4
k=la €A
Here, € denotes the bitwise sum, that is, a sum modulo 2 performed separately for each bit. The conditions of
the generalized suppression law are never satisfied when nis odd. As an example, let us again consider state
|ry =11, 1,1, 1, 0, 0, 0, 0). We have N4(7) = FforA = {2},A = {3}.and A = {2,3}. Equations (3), (4)
predicts suppression of all output states whose binary representation has an odd number of 1s in either the
second column, the third column, or in the second and third columns combined. For example, the states
§=0,6,7,8),5%=1(2,6,7,8),and 53 = (4, 6, 7, 8), having binary representations

R = R, = Rs = )

010 001 011
1 01 1 01 1 01
110 110 110
111 111 111
respectively, are all suppressed. In appendix A we give a proof of this law, while a calculation of the asymptotic
behavior for the fraction of suppressed events these criteria identify can be found in appendix B. While this work
was under completion, a similar suppression criterion was proposed in [40] for hypercube graphs. In appendix A
we show that the interferometers and criteria of [40] are actually equivalent to ours. In the n = 2 case, and
therefore for the experimental implementations reported below, our criterion identifies all suppressed events,
which are more numerous than the equivalent result for Fourier matrices [24] with the same size. In figure 1 we
see how 8-mode Sylvester and Fourier matrices compare in terms of suppressed transitions for 2 and 4 photons,
where it is clear that the Sylvester matrix outperforms the Fourier one.

For small values of n and m it is also possible to exactly compute the fraction of suppressed input—output
pairs (including those not detected by the discussed suppression law), which we report in table 1. This table
shows that the Sylvester matrix does indeed perform better than the Fourier matrix for most cases, although
there are cases in which no suppression is given by Sylvester interferometers. For instance, in table 1 we observe
that, within the investigated regime, the fraction of suppressed configurations is 0 when the number of photons
is2? — 1 forall p. Moreover the presented suppression law applies when the number of photons is even, as
opposed to the suppression law for Fourier interferometers which works for all values of 1, and the one
presented in [39] which works for onlyn = 2%. Forn = 3 and 7, for example, it is possible to show that there can
be no suppressed transitions for Sylvester matrices (this is a consequence of the fact that the permanent of a
(2 — 1) x (22 — 1) matrix where all elements are & 1, for integer p, is never zero [44]), whereas the Fourier
matrix does contain a few suppressions. Note also that, for all cases reported in table 1 where the test of
conditions I and II can be applied, the total number of suppressed pairs for Fourier matrices is not only smaller
than the corresponding quantity for Sylvester matrices, but smaller even than the subset of input—output pairs

that our test detects.
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Figure 1. Matrices of scattering amplitudes between all combinations of input—output pairs of no-collision states of 2 and 4 photons
into 8 modes, for Sylvester and Fourier matrices. Squares with black boxes correspond to suppressed events which are predicted by the
suppression law of [24] (Fourier matrix, valid only for cyclic inputs) and by the suppression law of equations (3), (4) (Sylvester matrix).
Red and green squares represent the suppressed and non-suppressed pairs respectively obtained by numerical calculations.

(7.8)

(5,6,7.8)

Table 1. Fractions of suppressed pairs for Sylvester and Fourier
matrices, for several values of m modes and n photons. The
column Sylvester (All) reports all suppressed pairs, and the
column Sylvester (Test) only those detected by the discussed
suppression law. Note that the test described in such law only
works for even values of n. Numbers indicated by an * are
estimates obtained by sampling 500000 different input—output
pairs, all others are exact.

m n Sylvester (All) Sylvester (Test) Fourier

4 2 66.7% 66.7% 44.4%
3 0 0 0

8 2 57.14% 57.14% 24.49%
3 0 0 16.33%
4 54.86% 27.42% 21.22%
5 57.14% 0 24.49%
6 57.14% 57.14% 48.98%
7 0 0 0

16 2 53.33% 53.33% 14.22%
3 0 0 5.22%
4 40.57% 11.5% 5.37%
5 40.57% 0 2.54%
6 37.14% 9.9%" 2.32%
7 0 0 0.889%*
8 26.24% 6.99%" 1.20%
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Figure 2. (a) Scheme for the 4-mode and (b) for the 8-mode experiments. (c) Generation of two-photon states with four type-II
parametric downconversion (PDC) sources embedded in crystals C1 e C2 (a) for the scattershot regime and for the single-source case
with Crystal C1 (b). By exploiting the polarization degree of freedom, each crystal comprises two different two-photon sources. In the
scattershot regime, the injection of single photons in specific input modes of the interferometer is heralded by the detection of the
corresponding twin photon. In the single-source case (b), a pair of twin photons are directly injected into the interferometers without
heralding detectors, while the input states are manually changed and characterized separately. (d) Injected photons are synchronized
with a specific delay Atso as to be effectively indistinguishable. (e) Layout of the 4- and 8-mode Sylvester interferometers. Photon
injection and extraction is done using FAs. (f) Each output is collected by an avalanche photodiode, while electric signals are sent to an
electronic stage to analyze data. The acquisition systems are shown for the 4-mode device (top) and 8-mode device (bottom). (BBO:
beta-barium borate (source), IF: interferential filter, PBS: polarizing beam splitter, PC: polarization compensator, DL: delay lines with
motorized stages, FA: fiber array).

3. Experimental generalized suppression law

The generalized suppression law has been tested experimentally in 4- and 8-mode Sylvester interferometers,
implemented by exploiting a 3D architecture enabled by femtosecond laser writing [37] (see figure 2). We
performed a two-photon scattershot boson sampling experiment [12] to verify the suppression law, feeding each
input port of the 4-mode chip with one heralded photon from a different PDC pair. The output events
corresponding to two-photon injection were then post-selected via four-fold coincidence measurements (two
heralding detectors and two detectors at the output of the device) for all the (;) = 6 input—output

combinations. In such a way, the apparatus is able to sample all no-collision input—output states, i.e., those
configurations where no more than one photon is present for each input and output port. The experimental
setup adopted for the scattershot approach is shown in figure 2. Further details on the generation and detection
arereported in appendix C.

The observed two-photon output statistics are shown in figure 3, where one can recognize the pattern of
peaks and dips predicted by the Sylvester matrix (Us). As a first step, in figure 3 we report the comparison
between the experimental data and the theoretical predictions obtained by a model taking into account the main
sources of errors (discussed in details in appendix D). In this scattershot experiment, three main imperfections
affect the measured data: (i) fabrication errors in the unitary transformation, (ii) multi-photon emission from
the source, and (iii) partial indistinguishability of the heralded photons. Effect (i) leads to a non-unitary fidelity
between the implemented transformation and the Sylvester one. This can be checked by performinga
tomography of the unitary transformation. The tomography has been achieved by measuring all single-photon
probabilities and two-photon HOM visibilities, and by minimizing a x> function to retrieve the physical
parameters of the device (directional coupler transmittivities and internal phases) that best reproduce the
observed experimental data [37, 45]. A figure of merit to quantify the adherence of the implemented
transformation with the Sylvester one is the fidelity F, defined between two unitary matrices Uand V as
F = 1/m| Tr(UV )| where m is the matrix dimension. In our experiment, such fidelity attains a value close to
unity F = 0.99807 £ 0.00005, and thus error (i) is small and negligible with respect to (ii)—(iii). Error source (ii)
is due to the probabilistic nature of PDC, which leads to a non-zero probability of emission of two photon pairs
from a single source. In presence of non photon-number resolving detectors and losses, multi-photon emission
leads to noise contributions that cannot be discriminated from the correct evolution. In our experiment, effect
(if) is approximately ~3% of all collected events. Partial indistinguishability of the heralded photons (iii) is due to
the presence of spectral correlations between photons belonging to the same pair. This can be modeled by an
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Figure 3. Measured two-photon probability distributions 13,';'" in the scattershot regime for all input—output combinations with the
4-mode device, where (i, j) denotes the input modes and (1,n) the output modes. Each subpanel (a)—(f) corresponds to a different
input state. Top plots of each subpanel: measurements with indistinguishable particles (rectangles, 1o interval due to Poissonian
statistics of the detected events) compared with theoretical predictions given by the model of the experiment (vertical bars). Input—
output combinations forbidden by the suppression law are shown in red, while non-suppressed ones are shown in green. Bottom plots
of each subpanel: measurements with distinguishable particles (rectangles, 1 o interval due to Poissonian statistics of the detected
events) compared with theoretical predictions given by the model of the experiment (vertical bars). In each subpanel the single
violations D((i‘,lj)) with indistinguishable photons for each input state are reported.

indistinguishability parameter, which in our experiment reaches the value p = 0.758 £ 0.008 (see appendix D).
A good agreement between the experimental data with indistinguishable photons and the model is found, and is
confirmed by the variation distance d = 1/2%°,|[PS? — P™*Y| between data P and the predictions P™°¢ . For
the reported experiment, the value d averaged over the input states is d = 0.053 & 0.021. Analogously, the same
analysis is performed for experimental data collected with distinguishable photons. Again the good agreement is
confirmed by the distance d = 0.045 + 0.016, averaged over the input states, between the model and the
measured data.

An effective figure of merit to estimate if the observed data are compatible with those expected from a fully
interfering multiphoton source is the degree of violation D = Ni,pidden / Nevents [24> 37]. Here, Niopidden 18 the
number of events which occur in an input—output combination which is predicted to be suppressed by
equations (3), (4), while Neyenys is the total number of measured events. In an ideal scenario with
indistinguishable photons evolving in a Sylvester transformation, the degree of violation is equal to zero.
Evaluating the observed violation permits to rule out alternative hypotheses on the nature of the injected state.
More specifically, if the observed value of D is significantly smaller than the expected value for a given model,
that hypothesis can be excluded as a possible explanation of the data. The simplest case is that the # photons are
distinguishable. A more elaborate alternative model is the mean field (MF) state [24, 46, 47], defined as a single-
particle state whose wavefunction is macroscopically spread over a set of inputs A: |¢qyp) = n~ /2% _ el”] JAR
where | j,) identifies a single-photon state in mode j,, and phases 6, are randomly chosen from a uniform
distribution. Summing the output statistics of 7 states of this form reproduces some macroscopic interference
effects [10] of n indistinguishable photons injected in modes A. Note that suppression laws are only partially
fulfilled by MF states statistics, which confirms the diagnostic power of these tools. In particular, it is easy to
check that the expected degree of violation for distinguishable particles and MF states in Ug are respectively 0.66
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Figure 4. (a) Two-photon probability distribution in the regime of distinguishable photons, 8-mode device, for all input—output
combinations. (b) Two-photon probability distribution in the regime of indistinguishable photons in the 8-mode device, calculated
via the HOM visibilities measured for all input—output combinations. Combinations forbidden by the suppression law are shown in
black squares, while measured probabilities for each event are shown with a scale from red (lower values) to green (higher values). (c)
Measured violations for all the input combinations. Cyan bars are the observed violations, with corresponding error bars in blue. Blue
line: mean over all violations. Purple line: mean field (MF) threshold. Red line: distinguishable photons (D) threshold.

and 0.4 (considering only collision-free two-photon inputs and outputs). The overall experimental violation D,
obtained by summing all the measured events over all possible input—output combinations, is found to be
D®W = 0.238 + 0.003. The measured value, below the two thresholds by respectively 141 (distinguishable) and
54 (MF) standard deviations, thus unambiguously excludes both these hypotheses (figure 3).

The suppression law has been experimentally verified also using a Sylvester 8-mode chip, where the full set of
(i) = 28 two-photon no-collision input states were independently investigated. In figure 4 we report the full set
of 28 x 28 experimental probabilities, retrieved from the HOM visibilities measured for all no-collision input—
output combinations. In this case, one can show that the theoretical degrees of violation for distinguishable
particles and MF states are respectively 0.57 and 0.31. The mean value of the violations is D® = 0.115 + 0.002,
well below the theoretical bounds predicted for MF and distinguishable particles, thus ruling out these
alternative hypotheses.

4. Conclusions and discussion

We introduced and verified experimentally a suppression law pertinent to Sylvester interferometers with
indistinguishable photons as inputs. The choice of this unitary transformation ensures a significant fraction of
suppressed input—output combinations, even for a larger number of photons and modes. For example, for

n = 6andm = 16 our law predicts the suppression of ~10% of the input—output combinations, compared to a
total fraction of forbidden events of ~37% (computed numerically), against just ~2.3% for the Fourier matrix
[24, 37]. This suppression can be useful towards identification of genuine multiphoton interference also in
scattershot boson sampling experiments, where the full set of possible input states is employed. Indeed, random-
input generation has been recognized as a promising approach to greatly enhance the event rate in PDC-based
scattershot boson sampling experiments [12]. In this case, while the fraction of predicted suppressions vanishes
exponentially, we find that there is a significant fraction of forbidden configurations which are not detected by
the proposed law, thus encouraging further investigation for a theorem that holds in the more general case. We
have shown that the suppression law is able to rule out alternative models that display coarse-grained
interference effects. Its application will be helpful in testing boson sampling experiments, in cooperation with
techniques suitable to study the overall transformations [31], as well as in assessing the degree of
indistinguishability of single-photon sources, thanks to the high-sensitivity of Sylvester interferometers to
multi-photon interference.
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Appendix A. Suppression law for Sylvester matrices

In this appendix we present a proof of the test that generalizes the one of [39], predicting a higher fraction of
suppressed pairs. This test can be assessed with a computational cost increasing only polynomially in 2 and .
After proving the test is sound, we will show it is equivalent to a test proposed independently in [40], using a
different formalism. Let us begin with the following two straightforward lemmas.

Lemma 1. Let S,, be the set of permutations of {1, ..., n}, andlet T € S, be a permutation different from the identity
such that 7> = 1. Then we can uniquely associate to each o € S, another (different) permutation o, = T o o,
where o denotes the composition of permutations.

This lemma directly follows from the observation that S,, is a finite group. For the suppression law described
in this article, it is however useful to remark this way to associate to each permutation another permutation. In
fact, the core principle behind the suppression law will be that, provided some conditions are satisfied, one can
find a 7 such that, for every o, the contributions to the amplitude given by o and o, cancel each other out.

Lemma 2. Let 7, R and N beasin section 2. Then NA(F) = ¥ ifand only if NA(R) ~ R. This, in turn, happens if
and only if there is a permutation T € S, such that NA(R) = R", where R” is obtained from R by applying the
permutation T to the rows of R. Now, if T is such a permutation, we have

(i) 7=1,

(i) 72 =1,
(iii) foreacho € S,, NA(R?) = R™°
(iv) all columns of R in A have an equal number of 1s and 0s,

(v) all columns of R notin A have an even number of 1s and an even number of 0s.
Proof.

(i) By definition, N(R) flips all elements of columns of R corresponding to the set A. If 7 is the trivial
permutation, N4(R) = R, which is not possible unless A empty.

(ii) N?applied twice to a BM clearly acts as the identity, from which follows immediately that 72 = 1.

(iii) This can be seen from the explicit expression of N4(R):

16 Rk,(w a € A:

A.l
R o> a0 € A. (A1)

NAR) = {

(iv) Take some column of R in A. By assumption, there is an operation composed of flipping every element
followed by some permutation that leaves it invariant. Flipping every element switches the number of ones
and zeroes, whereas a permutation preserves them, and so the number of ones and zeroes must be the same.
Clearly this holds for all columns of Rin A.

(v) If NA(R) = R, the action of T on the columns of R in A implies it is a permutation that maps half of the
rows of R onto the other half. But 7 must also act as the identity on the rows of R that are not in A, and so
each of these halves must contain the same number of ones and zeroes, which means there is an even
number of bothin R.

We are now ready to state the main result for our suppression law:
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Theorem 1. Let |r) and |s) be two states of n particlesin m = 2P modes, with corresponding mode occupation lists 7
and §, and BM representations R and S. If there is a subset A of the columns of R such that

NAF) =7
T , A2

@ @ Sk,a =1 ( )

k=lacA
then the transition from |r) to |s) (and consequently also that from |s) to |r}), when transversing the Sylvester
interferometer, is suppressed.
Proof. The transition amplitude from |r) to |s) can be written as

1
A= Per(U.,), (A3)

nlorads!oLsy!

where Per(U) denotes the permanent of U. In the equation above, U, ,is the matrix defined element-wise as

[Urslij = [H (D)5 (A.4)

1
Jm
where we recall H(2P) is the Sylvester matrix (see definition 1). Using the closed form expression for the elements
of a Sylvester matrix, with equations (A.3) and (A.4), and denoting with M; the ith row of matrix M, we obtain

n
A=D [[ (-=DR»®Sc =D 3" (~1)*®, (A.5)
o€S, k=1 o€ES,
where B ® C denotes the bitwise dot product between vectors Band C, definedas B ® C == @f_, B,C,, Disa
constant factor, and we defined

n n p

E(0) = DRop © Sk = D D Row,0Ska (A.6)
k=1 k=1la=1

Since we are interested in whether .4 = 0, we will ignore the constant factor D in (A.5). Clearly, for A to vanish,

we need exactly half of the permutations to be such that (—1)¥®) = 1. A necessary and sufficient condition for

this to hold is if, for each permutation o, we can uniquely assign another permutation ¢’ such that

E(o") =1 ® &(o). From lemmas 1 and 2, we know that if condition (A.2) holds we can uniquely associate to

each o another permutation o, = 7 o 7, where T is the permutation such that N4(R) = R". Using o in (A.6) we

have

nop
5(07) = @ @Rr(a(k)),ask,a

k=1la=1

= @ [( @ RT(a(k)),a'Sk,a') 3 [ @ R‘r(o’(k)),(wsk,a]:|- (A7)

k=1] \aeA afA

Using now the explicit expression for AA(R) and lemma 2, we have

1D Rotra = Rrwy,a fora € A
NAR?) = R™ = ®. @), . (A.8)
Rowy,a = Rr@,a fora ¢ A
Using the above in (A.7), and by using (A.2), we finally obtain
&(or) = E(o) @ [@ D Sk,a:| = &(0) @ 1. (A.9)
k=lacA
Using this last result in (A.5) we conclude that
A=CY (=)@ o 3> [(=D)FD 4 (=) =0 (A.10)
c€eS, o€S,: E(0) even
which proves that the input-output pair (|r), |s)) is suppressed. O

Remark. (Efficiency) To check if theorem 1 applies to a given input—output pair, one has to verify condition
(A.2)foreach one ofthe 2 — 1 = m — 1possible (non-empty) subsets of the p columns of R and S, which
requires only a polynomial (in 7 and m) number of elementary operations. Hence, the proposed suppression
law is efficiently verifiable.

While (A.2) gives a sufficient condition for an input—output pair to be suppressed, it is not necessary. For
most input states, not all suppressed outputs satisfy theorem 1. In appendix B we give estimates of the fraction of
states our test identifies as suppressed.
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We now show that our suppression criterion for Sylvester matrices corresponds exactly to that obtained in
[40] for hypercube graphs. These criteria were obtained independently, and use different formalisms. In [40], the
unitary describing the dynamics of n bosons in a hypercube graph is given by

U= %(} i)w (A.11)

This is the same unitary evolution implemented by a Sylvester interferometer with 22 modes, except for
unimportant local phase shifts. As in our case, the criterion of [40] identifies symmetries that the n-photon input
must satisfy. It is convenient to describe the input as a p-bit string 7, with ones indicating where single input
photons are present, and zeros where no photon is present. The symmetries considered in [40] correspond to the
(27 — 1) different products of the p different permutations described by a tensor product of a single X matrix
and (p — 1)2 X 2identity matrices:

S$§i=11®.0X;®l® ..l (A.12)

with i ranging from 1 to p. Each symmetry S divides the set of 2° strings into two subsets of equal size,
corresponding to the eigenspaces of S with eigenvalues & 1. Our criterion considers subsets A of indices that
determine which columns of the BM representation R of the input state will be negated. There are exactly 2 — 1
possible such subsets of indices, and negating bits of R in accordance to a given subset A corresponds to
implementing exactly one of the permutations above. Both criteria require that the input state 7 be invariant
under at least one such permutation.

If the input (represented by 7) is invariant under some of these symmetries, we must then test whether the
condition over the output s is satisfied. In [40], for suppression it is required that an odd number of photons be
ineach £ 1 eigenspace of the identified input symmetry. This is exactly equivalent to our condition on the
outputs. This shows that our suppression criteria is exactly equivalent to the criteria proposed by [40].

Appendix B. Estimates on fraction of suppressed states

In this appendix, we give estimates on the fraction of suppressed input—output pairs identified by the conditions
of theorem 1, particularly focusing on upper bounds and asymptotic limits (in the number of modes m and
photons n). Throughout this appendix, we are still restricted to m = 2* for some integer p, which means all
binary matricesaren x p,andton < m. The fractions we obtain consider mainly the set of all possible states,
G,.,m» whichhas |G, .| = ( " +: ! ) elements. At the end of this appendix we discuss the applicability of our
results to the restriction of no-collision states.

We begin by restating the two conditions of theorem 1 informally, as they would be used in a test. For
simplicity, we refer to the states |r) and |s) of theorem 1 as input and output states, respectively, although any
conclusions can be extended to the case where the roles of input and output are reversed. With this in mind, we
note that condition of equation (3) concerns only inputs, and we restate it as:

Condition I. For a given input with BM representation R, check whether R has any subsets of columns A such
that negating those columns of R results in R up to a permutation of the rows (i.e. N4(R) ~ R).

Let us call A the set of all such subsets of columns A. For the state in example 2, for instance,
A = {{2}, {3}, {2, 3}}. If condition I finds no such A, the test fails to identify any suppressed transitions. Also,
asa consequence of lemma 2, the test only works if 1 is even. Assuming that condition I yielded some non-empty
A, we can test for condition of equation (4), which is a test only on the outputs and which we restate as:

Condition II. Consider any output with BM representation Sand any A € A. Ifthe columns A of S contain an
odd number of 1s, the transition from R to Sis suppressed.

For simplicity, we begin by estimating how many output states are suppressed given that condition I
identified a non-empty set A for some input. Before that, we need one final definition. We say that the elements
of A are independent if none can be replaced by a sequence of the others. That is, if thereisno A € A and
Ap, Ay, .. A € A\ {A}suchthat NAWN 4 . (N 4(X))) = NA(X) for all binary matrices X. To illustrate
this, consider example 2. There, A = {{2}, {3}, {2, 3}}. Clearly, negating columns {2, 3} of a BM is the same
as negating column {2} followed by column {3}. Furthermore, condition II can only be satisfied for {2, 3} ifitis
satisfied by either {2} or {3}. Thus, including {2, 3} in A does not give any new suppressions beyond those
identified by {2} and {3}, so we can safely drop it (we could have dropped either {2} or {3} instead, to the same
effect). Since the binary matrices have p columns, there can be at most p independent elements in 4. We are now
ready to state the following.
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Corollary 1. Let A be the set identified by condition I for some input state, and suppose it contains q independent
elements. Then the fraction of outputsin G, ,,, (i.e. including collision states) that condition Il identifies as suppressed

isequaltol — % + O(k’%).

Proof. Suppose initially that there is a single element A € A,say A = {1}. The corresponding suppressed
outputs are those whose BM representation contains an odd number of 1s in the first column. These consist of
approximately half of all possible states, which can be seen as follows. Let us write the BM S of some such output
as

S=(8 ), (B.1)

where S, isits first column and §’ a matrix of the remaining p — 1 columns. Since all matrices that are equivalent
up to a permutation of the rows correspond to the same state, we can assume without loss of generality that the
1sin S; occupy the first slots. This means there are only n + 1 possibilities for S, and it is easy to see that /2 of
them satisfy condition II. Since this holds irrespective of the choice of &', we conclude that (n/2)/(n + 1) = 1/
2 4 O(1/n) out of all states are suppressed. The argument follows through almost unchanged for any A, even if
it spans several columns. The above argument assumes that the number of states whose corresponding BM have
k ones in the first column does not depend on k. While this is strictly true only in the approximation in which we
count the number of states as if the particles are distinguishable, a more thorough calculation taking into account
the bosonic statistics can be performed and leads to the same asymptotic result.

Suppose now A has g independent elements. By the previous paragraph, the first element of 4, let us call it
Ay, leads to a suppression of approximately (i.e. up to O(1/n)) half of all outputs. The second element, A,, also
leads to a suppression of approximately half of all outputs—Dbut now there is an overlap with those identified by
A;. Since the two are independent, approximately half of the elements identified by A, have already been
identified by A; (e.g., approximately half of the matrices with an odd number of 1s in the first column also have
an odd number of 1s in the second column). Thus the new suppressions identified by A, correspond only to 1/
4 + O(1/n) of all states. Each subsequent independent element of A further divides the remaining set of
unsuppressed states by half, and we conclude that condition [T in fact identifies 1 — 1/27 + O(g/n) of all states
as suppressed. Since g < p = log(m), this gives the claimed asymptotic behavior. O

Corollary 1 shows that in the worst case, approximately 1/2 of all outputs are suppressed for any input which
satisfies condition L. This fraction can, in principle, be as highas 1 — 1/m if condition I identifies p independent
elements in A. It is thus essential to identify how many inputs effectively satisfy condition I in order to
determine the overall fraction of suppressed pairs. Indeed, theorem 1 treats input and outputs asymmetrically,
and as a consequence condition I is much more stringent than condition II.

Corollary 2. Only an exponentially vanishing subset of the inputs is detected by the test of theorem 1.

Proof. Let us begin by counting how many inputs have a particular element A in their set .A. Consider initially
that A = {1}. For condition I to hold in this case, we need half of the elements of the first column of R to be 1 (see
lemma 2). Since we are free to rearrange the rows as desired, we can assume that R is ordered as follows

L, R
_ , B.2
(On/Z Rz) -2)

where 1,,,and 0, , are vectors of /2 1s and Os respectively, and R, and R, are (n/2) x (p — 1) binary matrices.
For R to satisfy N} (R) ~ R, wemusthave R, ~ R, and in fact we can further reorder the rows of R have such
that R; = R,. We can now count how many binary matrices satisfy these constraints. Clearly we have no choice
over the first column and over R,, so we only need count all possibilities for R;. Given the form chosen for R
above, itis clear that any two choices for R, that are equal upon permutation of the rows represent the same state,
and should not be counted twice. This leads to a cumbersome combinatorial problem, since we need to tally all
possibilities for R; up to permutations, but the number of permutations changes depending on whether R, has
repeated rows. A shortcut to this calculation is to realize that we can formally map R, back toa MAL

representation, as in section 2 and, subsequently to a quantum state of /2 photons in 2" = #1/2 modes.
(n+m)/2—1
n/2 :
Consider next another possibility, that A = {1,2}. The counting in this case is similar to before, but a little
trickier, because we need to keep track of how many choices we have for the first two columns such that

N2 (R) ~ R. Let us once more order the matrix as follows

Thus, the number of possibilities for R, is (
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L, aa R
R = R B.3
(On/Z a Rz) (B-3)

where 1,,,, and 0, , are defined as before, a; and a, are two binary vectors of length /2 and R; and R, are (n/

2) x (p — 2)binary matrices. We want R to be ordered in such a way that A1"2}(R) ~ RimpliesR, = R, to
reuse part of the previous argument. This immediately implies that a, is obtained from a, by negating its
elements. We know that a, and a,, together, must contain /2 1s, due to lemma 2, but that is already guaranteed
by the fact that they are negations of each other®. From the freedom of reordering rows, we can assume that the

Isina; occupy the first positions. This leaves (/2 + 1) possibilities for a;. Combining that with the

Q@n+m)/4— Qn+m)/4—1
( n/2 n/2 )
possibilities. How does this compare with the case A = {1}? We can use the following asymptotic expression for

the binomial coefficient (Z )

! ) possibilities for R; as in the previous paragraph, we geta total of (n/2 + 1) (

(n)N (n — k/2)k (B.4)

k) ke R ark
which holds when # is both large and much larger than k. By using this expression it is easy to see that, in the limit

ofbothmand nlargewithn < m, (n/2 + 1) ( @ntm) /4= 1) grows exponentially slower than ((” +m/2-1 ),

n/2 n/2
and so we can use the latter as an upper bound. In fact, as we consider sets A comprising of more columns, the
constraints tend to become more restrictive and the number of matrices that satisfy them decreases. So we will

use ((n M 7:)//2 2! ) as an upper bound on the number of states that satisfy condition I for any A.

We are now ready to give an upper bound on the number of states that satisfy condition I for some non-
empty A. Since there are p columns in the binary matrices, Thereare 2 — 1 = m — 1 possible As that can
appear in 4. By the inclusion-exclusion principle, we would need to sum the number of states that satisfy
condition I for each possible A, then subtract those that have been counted multiple times because they satisfy it
for more than one A. Itis simpler, however, to use the union bound, which in this case says that the number of

states is upper-bounded by (m — 1) ( (nt ':)//2 2t ) Recall now that the total number of states is (" * " ! )
Using an asymptotic formula for the binomial coefficient, it is clear that the fraction of states detected by the test
is exponentially small in the limit of large n and m, as claimed. O

In [40], the authors reach the same conclusion, using a different formalism, for the fraction of suppressed
outputs given a specific input (i.e., corollary 1). However, they do not provide an estimate for the fraction of
inputs that satisfy condition I (i.e., corollary 2).

So far, we have considered only the full set of states (i.e, including collision states) in the estimates of
suppressed fractions, but the restriction to no-collision states is often more useful. For example, no-collision
outputs are the only detected outcomes when the experiment is performed using bucket detectors (i.e. that do
not distinguish one photon from many). More importantly, experimental implementations typically consider
inputs with no more than a single photon per mode. This is also relevant for boson sampling applications, being
input state with at most one photon per mode the appropriate choice for its computational hardness. Thus, it
would be interesting to obtain versions of corollaries 1 and 2 where both the suppressed pairs and the set of all
states included this restriction. Unfortunately, some pathological instances arise when we try to specialize the
previous results in that way. To see that, consider the case where n = m. There, we have a single no-collision
state, and it satisfies condition I. Thus, we conclude that 100% of inputs in that case have suppressed outputs. As
we now argue, it is still possible to show a weaker version of corollary 2 for no-collision inputs.

Consider the regime where m = O(n?). Experiments are often done in this limit, especially since it seems to
be arequirement for the computational hardness of the boson sampling model [1]. It is easy to show that the set
of no-collision states is not a negligibly subset of all states in this regime, due to the so-called birthday paradox.
Toillustrate this suppose m = n* holds exactly, in which case the fraction of no-collision states among all states

is ('i ) / ( " +: ! ) Using Stirling’s approximation, one obtains that this tends to 1/ein the limit of large n.

Since the set of no-collision states is only polynomially small in the set of all states, a no-collision version of
corollary 2 must still hold—even if all inputs that satisfy condition I were concentrated in the no-collision
subset, they would still be an exponentially small fraction of it. This argument shows that the conclusion of
corollary 2 can be extended to the no-collision case in the limit m = O(n?), and we leave it as an open question
whether it holds in general.

Corollary 2 also has consequences for the application of theorem 1 as a test for validating boson sampling
experiments. As argued in [24], suppressed events in Hadamard matrices (such as the Sylvester or Fourier

8 . . . . .
Note that, whenever a; has 1/4 of the 1s, we are double-counting some matrices that were already included in the case A = {1}. Butin the
asymptotic limit they form a negligible fraction of the cases, so we do not worry about this correction.
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matrices) could be useful as a way to witness partial photonic indistinguishability. Informally, the idea is that we
only have suppressions of certain transitions if the particles are perfectly identical, and so observations of
quantumly suppressed events could be used to estimate the degree of partial distinguishability of the photons.
Corollary 2 shows that in Scattershot BosonSampling experiments [12, 25, 26], where inputs are chosen
uniformly at random from all no-collision states, the number of suppressed events detected by theorem 1
vanishes exponentially. On the other side, when specific input states that satisfy condition I for many different As
are employed, theorem 1 might provide a favorable scaling. Indeed, we showed thatas manyas 1 — O(1/m) out
of all outcomes can be suppressed, but we leave a formal description of such a test for future work, as well as the
question of whether the Sylvester matrix is optimal for this task.

Appendix C. Photon generation, manipulation and detection

Single photons were generated at 785 nm with a type-II PDC process in four PDC sources for scattershot
configuration, pumping two crystals (2-mm long beta barium borate, BBO) with a 392.5 nm wavelength,

650 mW field, obtained by second harmonic generation from a 180 fs duration, 76 MHz repetition rate, Ti:Sa
pulsed laser. Photons are spectrally filtered by means of 3 nm interferential filters and coupled into single-mode
fibers. The indistinguishability of the photons is reached by means of a polarization compensation stage and by
propagation through delay lines for each path before injection into the interferometer via a single-mode fiber
array. After the evolution through the integrated devices, photons are collected via a multimode fiber array. The
detection system for the scattershot experiment consists of four single-photon avalanche photodiodes for the
4-mode chip and other four for the heralding photons in the scattershot regime. Single-shot measurements have
been performed with a 2-photon state produced by a single BBO crystal and injected in the 8-mode Sylvester
interferometer. At the detection stage, eight avalanche photodiodes have been used to collect all output
combinations. An 8-channel electronic data acquisition system (ID-800 by IDQuantique) allowed us to detect
2-photon coincidences between all output pairs and 4-photon coincidences (two injected plus two triggered) for
all possible input states. LabView and C programs have been used to retrieve the coincidence events associated to
all possible output combinations.

Appendix D. Model of the experiment

Here we discuss a theoretical model to describe the results of the experiment with the 4-mode device. In addition
to the non-perfect unitary transformation (i), two sources of deviation from the ideal behavior contribute to the
output measured pattern: (i) multi-photon emission from the sources, and (iii) partial indistinguishability of
the heralded photons.

As a preliminary step we characterized the parameters of the experimental setup. Typical singles count rates
for the different sources are in the range 100-250 kHz, while two-fold coincidences are in the range 10-35 kHz.
Such rates are measured by directly connecting the sources to single-photon detectors via single-mode fibers. By
considering a detection efficiency of 4. ~ 0.55 and the laser repetition rate of 76 MHz, we estimated the
nonlinear gain g of the sources (¢ ~ 0.12 for C1, ¢ ~ 0.115 for C2) and the coupling to single-mode fibers by
finding numerically the values that best fit the measured rates. From this characterization, we also estimated the
heralding probabilities to be 7),-T (in the range ~0.1-0.22 for the different sources). The overall transmissions
from the delay lines to the output fiber-array are directly measured to be ~0.08-0.16, depending on the input—
output combination. Thus, the overall transmission of the injected photon from the generation to the detection
stage is estimated to be ~0.01-0.02 (including detection efficiency).

Multi-photon emission

Multi-photon emission arises due to the probabilistic nature of PDC. Indeed, there is a non-zero probability that
two pairs are emitted from the same source within the same pulse. Ignoring terms with the emission of three or
more pairs, the output state of each source can be approximated as

|1/J> ~ 10, 0> + gll’ 1> + gz|2’ 2>: (D.1)

where gis the nonlinear gain of the source. Note that in our experiment, each PDC crystal corresponds to two
different photon-pair sources as shown in figure 2 of the main text.

Let us consider the situation where an event is recorded by the heralding detectors corresponding to inputs
(3, ), in coincidence with an event registered by the detectors placed at output modes (11, n). This event is
assigned to the transition from the input combination (4, j) to the output one (11, n). The correct evolution is
obtained when the sources on modes (i, j) generate a photon pair, the corresponding heralding detectors click,
and two photons are detected on output modes (171, ). Multi-photon emission and non-photon number
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resolving detectors result in additional patterns that can excite the same set of detectors. These patterns act as
noise contributions that cannot be discriminated from the correct evolution. Two different contributions have
to be considered. (a) Three different sources connected to input ports (i, j, k) emit a photon pair, while only the
heralding detectors on modes (3, j) click. Hence, three-photons are effectively produced. If only the detectors on
output modes (1, ) click (due to losses or the presence of more than one photon in the one output mode), this
process cannot be discriminated from the correct evolution (7, j) — (m, n). (b) Only the sources connected to
input ports (3, j) generate photons, but one of the two sources produces a double-pair event. This event cannot be
discriminated in the heralding process with non-photon number resolving detectors. In this case, two-photons
may be injected in the same input mode. Similarly to case (a), when only detectors on mode (1, n) click, this
process cannot be discriminated from the correct evolution (i, j) — (m, n).

Partial photon indistinguishability
Partial distinguishability between the generated heralded photon arises due to spectral correlations between
photons belonging to the same pair. Indeed, the two-photon term of a PDC source takes the following form

) = [[dn [dws f @ wal @pal @I, 0), (D.2)

where f(w;, w,) is the two-photon spectral amplitude. In general, spectral correlations are encoded in the
function f(wy, w,). When PDC sources are adopted as heralded single-photon sources, one of the two photons is
detected to certify the presence of the twin photon. Due to the correlations encoded in the two-photon wave
packet, the heralded photon will be in general in a mixed spectral state. This will result in a degree of partial
distinguishability between the photons emitted by two identical sources. The effective joint density matrix
describing the state of two heralded photons can be then approximated as

p® = p|1, 1)(1, 1] + (1 — p)|1/, 1")(1/, 1"], (D.3)

where |1, 1) stands for two indistinguishable photon, and |1/, 1”) stands for two distinguishable particles. Here,
pisan effective parameter describing the indistinguishability of the two photons. The parameter p can be
characterized from the visibility of an HOM interference experiment performed with a 50:50 symmetric beam-
splitter. In our case, the measured visibility between photons emitted from the two sources was

V® = 0.724 =+ 0.008. The parameter p can be retrieved from the value of V® by taking into account multi-
photon emission, leading to p = 0.758 + 0.008.
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