1,204 research outputs found

    Toward the automation of business process ontology generation

    Get PDF
    Semantic Business Process Management (SBPM) utilises semantic technologies (e.g., ontology) to model and query process representations. There are times in which such models must be reconstructed from existing textual documentation. In this scenario the automated generation of ontological models would be preferable, however current methods and technology are still not capable of automatically generating accurate semantic process models from textual descriptions. This research attempts to automate the process as much as possible by proposing a method that drives the transformation through the joint use of a foundational ontology and lexico-semantic analysis. The method is presented, demonstrated and evaluated. The original dataset represents 150 business activities related to the procurement processes of a case study company. As the evaluation shows, the proposed method can accurately map the linguistic patterns of the process descriptions to semantic patterns of the foundational ontology to a high level of accuracy, however further research is required in order to reduce the level of human intervention, expand the method so as to recognise further patterns of the foundational ontology and develop a tool to assist the business process modeller in the semi-automated generation of process models

    The Ontology of Group Agency

    Get PDF
    We present an ontological analysis of the notion of group agency developed by Christian List and Philip Pettit. We focus on this notion as it allows us to neatly distinguish groups, organizations, corporations – to which we may ascribe agency – from mere aggregates of individuals. We develop a module for group agency within a foundational ontology and we apply it to organizations

    Towards ontological foundations for agent modeling concepts using UFO

    Get PDF
    Foundational ontologies provide the basic concepts upon which any domain-specific ontology is built. This paper presents a new foundational ontology, UFO, and shows how it can be used as a foundation of agent concepts and for evaluating agent-oriented modeling methods. UFO is derived from a synthesis of two other foundational ontologies, GFO/GOL and OntoClean/DOLCE. While their main areas of application are the natural sciences and linguistics/cognitive engineering, respectively, the main purpose of UFO is to provide a foundation for conceptual modeling, including agentoriented modeling

    UFO: Unified Foundational Ontology

    Get PDF
    The Unified Foundational Ontology (UFO) was developed over the last two decades by consistently putting together theories from areas such as formal ontology in philosophy, cognitive science, linguistics, and philosophical logics. It comprises a number of micro-theories addressing fundamental conceptual modeling notions, including entity types and relationship types. The aim of this paper is to summarize the current state of UFO, presenting a formalization of the ontology, along with the analysis of a number of cases to illustrate the application of UFO and facilitate its comparison with other foundational ontologies in this special issue. (The cases originate from the First FOUST Workshop – the Foundational Stance, an international forum dedicated to Foundational Ontology research.

    The Knowledge of the Grid: A Grid Ontology

    Get PDF
    This paper presents a knowledge architecture and set of ontologies that can be used as the foundation to facilitate the matching of abstract resource requests to services and resources, to determine the functional equivalence of Grid middle wares and deployments and to allow the description of ‘hybrid’ compound Grids composed of individual heterogeneous Grids. This is necessary as in all these cases what is required is mediation between different views or descriptions of Grids, which requires a formal reference vocabulary. We present a framework and ontologies for achieving this

    Endurant Types in Ontology-Driven Conceptual Modeling: Towards OntoUML 2.0

    Get PDF
    For over a decade now, a community of researchers has contributed to the development of the Unified Foundational Ontology (UFO) - aimed at providing foundations for all major conceptual modeling constructs. This ontology has led to the development of an Ontology-Driven Conceptual Modeling language dubbed OntoUML, reflecting the ontological micro-theories comprising UFO. Over the years, UFO and OntoUML have been successfully employed in a number of academic, industrial and governmental settings to create conceptual models in a variety of different domains. These experiences have pointed out to opportunities of improvement not only to the language itself but also to its underlying theory. In this paper, we take the first step in that direction by revising the theory of types in UFO in response to empirical evidence. The new version of this theory shows that many of the meta-types present in OntoUML (differentiating Kinds, Roles, Phases, Mixins, etc.) should be considered not as restricted to Substantial types but instead should be applied to model Endurant Types in general, including Relator types, Quality types and Mode types. We also contribute a formal characterization of this fragment of the theory, which is then used to advance a metamodel for OntoUML 2.0. Finally, we propose a computational support tool implementing this updated metamodel

    Revisiting the Core Ontology and Problem in Requirements Engineering

    Full text link
    In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the "requirements problem", thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jackson's ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jackson's formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International Requirements Engineering Conference, 2008 (RE'08). Best paper awar

    Revisiting the Core Ontology and Problem in Requirements Engineering

    Full text link
    In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the "requirements problem", thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jackson's ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jackson's formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International Requirements Engineering Conference, 2008 (RE'08). Best paper awar
    corecore