6 research outputs found

    Measurements of True Leak Rates of MEMS Packages

    Get PDF
    Gas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing

    QSAR modeling of chemical penetration enhancers using novel replacement algorithms

    Get PDF
    The applications of transdermal delivery are limited because of the resistance of the skin to drug diffusion. Only potent drugs, with molecular weight less than 500 Da, are suitable to cross the skin barrier. Chemical Penetration Enhancers (CPEs) are used to promote the absorption of solutes across the dermal layers. In this investigation, a Quantitative Structure-Activity Relationship (QSAR) model is applied to relate chemical penetration enhancer structures with the flux enhancement ratio through a statistical approach. A database, consisting of 61 non-polar CPEs, is selected for the study. Each compound is represented by 777 QSAR descriptors, which encode the physical characteristics of the CPE and its structure. Selection replacement techniques are used to choose the eight most important descriptors. The enhancement ratio, an evaluation of the effect of the CPE, correlates well with this subset of features. The QSAR model can be adopted to predict factors that need to be adjusted to improve permeation of the drug through the skin. Three QSAR models are developed using different algorithms: forward stepwise regression (FSR), replacement (RM) and enhanced replacement (ERM) techniques. The first two methods yield equations with poor predictive power. The enhanced replacement method gives the best results, which meet cross-validation criteria: q2 = 0.79, 0.63 and 0.76 for the training set, test set and combined data, respectively. These results meet the predetermined criteria

    2009 Annual Progress Report: DOE Hydrogen Program

    Full text link
    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis

    GSI Scientific Report 2012 [GSI Report 2013-1]

    Get PDF

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)

    Proceedings of the First International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

    Get PDF
    1st International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Kruger Park, 8-10 April 2002.This lecture is a principle-based review of a growing body of fundamental work stimulated by multiple opportunities to optimize geometric form (shape, structure, configuration, rhythm, topology, architecture, geography) in systems for heat and fluid flow. Currents flow against resistances, and by generating entropy (irreversibility) they force the system global performance to levels lower than the theoretical limit. The system design is destined to remain imperfect because of constraints (finite sizes, costs, times). Improvements can be achieved by properly balancing the resistances, i.e., by spreading the imperfections through the system. Optimal spreading means to endow the system with geometric form. The system construction springs out of the constrained maximization of global performance. This 'constructal' design principle is reviewed by highlighting applications from heat transfer engineering. Several examples illustrate the optimized internal structure of convection cooled packages of electronics. The origin of optimal geometric features lies in the global effort to use every volume element to the maximum, i.e., to pack the element not only with the most heat generating components, but also with the most flow, in such a way that every fluid packet is effectively engaged in cooling. In flows that connect a point to a volume or an area, the resulting structure is a tree with high conductivity branches and low-conductivity interstices.tm201
    corecore