21,698 research outputs found

    Top-Down Processing: Top-Down Network Combines Back-Propagation with Attention

    Full text link
    Early neural network models relied exclusively on bottom-up processing going from the input signals to higher-level representations. Many recent models also incorporate top-down networks going in the opposite direction. Top-down processing in deep learning models plays two primary roles: learning and directing attention. These two roles are accomplished in current models through distinct mechanisms. While top-down attention is often implemented by extending the model's architecture with additional units that propagate information from high to low levels of the network, learning is typically accomplished by an external learning algorithm such as back-propagation. In the current work, we present an integration of the two functions above, which appear unrelated, using a single unified mechanism. We propose a novel symmetric bottom-up top-down network structure that can integrate standard bottom-up networks with a symmetric top-down counterpart, allowing each network to guide and influence the other. The same top-down network is being used for both learning, via back-propagating feedback signals, and at the same time also for top-down attention, by guiding the bottom-up network to perform a selected task. We show that our method achieves competitive performance on a standard multi-task learning benchmark. Yet, we rely on standard single-task architectures and optimizers, without any task-specific parameters. Additionally, our learning algorithm addresses in a new way some neuroscience issues that arise in biological modeling of learning in the brain

    Analyzing Learned Molecular Representations for Property Prediction

    Full text link
    Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial datasets spanning a wide variety of chemical endpoints. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary datasets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows
    • …
    corecore