5 research outputs found

    Formal Analysis and Verification of Max-Plus Linear Systems

    Full text link
    Max-Plus Linear (MPL) systems are an algebraic formalism with practical applications in transportation networks, manufacturing and biological systems. In this paper, we investigate the problem of automatically analyzing the properties of MPL, taking into account both structural properties such as transient and cyclicity, and the open problem of user-defined temporal properties. We propose Time-Difference LTL (TDLTL), a logic that encompasses the delays between the discrete time events governed by an MPL system, and characterize the problem of model checking TDLTL over MPL. We first consider a framework based on the verification of infinite-state transition systems, and propose an approach based on an encoding into model checking. Then, we leverage the specific features of MPL systems to devise a highly optimized, combinational approach based on Satisfiability Modulo Theory (SMT). We experimentally evaluate the features of the proposed approaches on a large set of benchmarks. The results show that the proposed approach substantially outperforms the state of the art competitors in expressiveness and effectiveness, and demonstrate the superiority of the combinational approach over the reduction to model checking.Comment: 28 pages (including appendixes

    Computational Techniques for Reachability Analysis of Max-Plus-Linear Systems ⋆

    Get PDF
    Abstract This work discusses a computational approach to reachability analysis of Max-Plus-Linear (MPL) systems, a class of discreteevent systems widely used in synchronization and scheduling applications. Given a set of initial states, we characterize and compute its "reach tube," namely the collection of set of reachable states (regarded step-wise as "reach sets"). By an alternative characterization of the MPL dynamics, we show that the exact computation of the reach sets can be performed quickly and compactly by manipulations of difference-bound matrices, and further derive worst-case bounds on the complexity of these operations. The approach is also extended to backward reachability analysis. The concepts and results are elucidated by a running example, and we further illustrate the performance of the approach by a numerical benchmark: the technique comfortably handles twenty-dimensional MPL systems (i.e., with twenty continuous state variables), and as such it outperforms the state-of-the-art alternative approaches in the literature

    Análise de alcançabilidade em sistemas max plus incertos

    Get PDF
    Orientadores: Rafael Santos Mendes, Laurent Hardouin, Mehdi LhommeauTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Os Sistemas a Eventos Discretos (SEDs) constituem uma classe de sistemas caracterizada por apresentar espaço de estados discreto e dinâmica dirigida única e exclusivamente pela ocorrência de eventos. SEDs sujeitos aos problemas de sincronização e de temporização podem ser descritos em termos de equações lineares usando a álgebra max-plus. A análise de alcançabilidade visa o cálculo do conjunto de todos os estados que podem ser alcançados a partir de um conjunto de estados iniciais através do modelo do sistema. A análise de alcançabilidade de sistemas Max Plus Lineares (MPL) pode ser tratada por meio da decomposição do sistema MPL em sistemas PWA (Piece-Wise Affine) e de sua correspondente representação por DBM (Difference-Bound Matrices). A principal contribuição desta tese é a proposta de uma metodologia similar para resolver o problema de análise de alcançabilidade em sistemas MPL sujeitos a ruídos limitados, chamados de sistemas MPL incertos ou sistemas uMPL (uncertain Max Plus Linear Systems). Primeiramente, apresentamos uma metodologia para particionar o espaço de estados de um sistema uMPL em componentes que podem ser completamente representados por DBM. Em seguida, estendemos a análise de alcançabilidade de sistemas MPL para sistemas uMPL. Além disso, a metodologia desenvolvida é usada para resolver o problema de análise de alcançabilidade condicional, o qual esta estritamente relacionado ao cálculo do suporte da função de probabilidade de densidade envolvida no problema de filtragem estocásticaAbstract: Discrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics are entirely driven by the occurrence of asynchronous events over time. Linear equations in the max-plus algebra can be used to describe DEDS subjected to synchronization and time delay phenomena. The reachability analysis concerns the computation of all states that can be reached by a dynamical system from an initial set of states. The reachability analysis problem of Max Plus Linear (MPL) systems has been properly solved by characterizing the MPL systems as a combination of Piece-Wise Affine (PWA) systems and then representing each component of the PWA system as Difference-Bound Matrices (DBM). The main contribution of this thesis is to present a similar procedure to solve the reachability analysis problem of MPL systems subjected to bounded noise, disturbances and/or modeling errors, called uncertain MPL (uMPL) systems. First, we present a procedure to partition the state space of an uMPL system into components that can be completely represented by DBM. Then we extend the reachability analysis of MPL systems to uMPL systems. Moreover, the results on reachability analysis of uMPL systems are used to solve the conditional reachability problem, which is closely related to the support calculation of the probability density function involved in the stochastic filtering problemDoutoradoAutomaçãoDoutor em Engenharia Elétrica164765/2013-199999.002340/2015-01CNPQCAPE
    corecore