76,466 research outputs found

    Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2

    Get PDF
    The paper describes a two-step finite element formulation for the thermo-mechanical non-linear analysis of the behaviour of the reinforced concrete columns in fire. In the first step, the distributions of the temperature over the cross-section during fire are determined. In the next step, the mechanical analysis is made in which these distributions are used as the temperature loads. The analysis employs our new strain-based planar geometrically exact and materially non-linear beam finite elements to model the column. The results are compared with the measurements of the full-scale test on columns in fire and with the results of the European building code EC 2. The resistance times of the present method and the test were close. It is also noted that the building code EC 2 might be non-conservative in the estimation of the resistance time. (c) 2005 Elsevier Ltd. All rights reserved

    Marker based Thermal-Inertial Localization for Aerial Robots in Obscurant Filled Environments

    Full text link
    For robotic inspection tasks in known environments fiducial markers provide a reliable and low-cost solution for robot localization. However, detection of such markers relies on the quality of RGB camera data, which degrades significantly in the presence of visual obscurants such as fog and smoke. The ability to navigate known environments in the presence of obscurants can be critical for inspection tasks especially, in the aftermath of a disaster. Addressing such a scenario, this work proposes a method for the design of fiducial markers to be used with thermal cameras for the pose estimation of aerial robots. Our low cost markers are designed to work in the long wave infrared spectrum, which is not affected by the presence of obscurants, and can be affixed to any object that has measurable temperature difference with respect to its surroundings. Furthermore, the estimated pose from the fiducial markers is fused with inertial measurements in an extended Kalman filter to remove high frequency noise and error present in the fiducial pose estimates. The proposed markers and the pose estimation method are experimentally evaluated in an obscurant filled environment using an aerial robot carrying a thermal camera.Comment: 10 pages, 5 figures, Published in International Symposium on Visual Computing 201

    Learning to Divide and Conquer for Online Multi-Target Tracking

    Get PDF
    Online Multiple Target Tracking (MTT) is often addressed within the tracking-by-detection paradigm. Detections are previously extracted independently in each frame and then objects trajectories are built by maximizing specifically designed coherence functions. Nevertheless, ambiguities arise in presence of occlusions or detection errors. In this paper we claim that the ambiguities in tracking could be solved by a selective use of the features, by working with more reliable features if possible and exploiting a deeper representation of the target only if necessary. To this end, we propose an online divide and conquer tracker for static camera scenes, which partitions the assignment problem in local subproblems and solves them by selectively choosing and combining the best features. The complete framework is cast as a structural learning task that unifies these phases and learns tracker parameters from examples. Experiments on two different datasets highlights a significant improvement of tracking performances (MOTA +10%) over the state of the art

    â„“1\ell^1-Analysis Minimization and Generalized (Co-)Sparsity: When Does Recovery Succeed?

    Full text link
    This paper investigates the problem of signal estimation from undersampled noisy sub-Gaussian measurements under the assumption of a cosparse model. Based on generalized notions of sparsity, we derive novel recovery guarantees for the â„“1\ell^{1}-analysis basis pursuit, enabling highly accurate predictions of its sample complexity. The corresponding bounds on the number of required measurements do explicitly depend on the Gram matrix of the analysis operator and therefore particularly account for its mutual coherence structure. Our findings defy conventional wisdom which promotes the sparsity of analysis coefficients as the crucial quantity to study. In fact, this common paradigm breaks down completely in many situations of practical interest, for instance, when applying a redundant (multilevel) frame as analysis prior. By extensive numerical experiments, we demonstrate that, in contrast, our theoretical sampling-rate bounds reliably capture the recovery capability of various examples, such as redundant Haar wavelets systems, total variation, or random frames. The proofs of our main results build upon recent achievements in the convex geometry of data mining problems. More precisely, we establish a sophisticated upper bound on the conic Gaussian mean width that is associated with the underlying â„“1\ell^{1}-analysis polytope. Due to a novel localization argument, it turns out that the presented framework naturally extends to stable recovery, allowing us to incorporate compressible coefficient sequences as well

    On materially and geometrically non-linear analysis of reinforced concrete planar frames

    Get PDF
    A family of new beam finite elements for geometrically and materially non-linear static analysis of reinforced concrete planar frames is derived, in which strain measures are the only interpolated unknowns, and where the constitutive and equilibrium internal forces are equal at integration points. The strain-localization caused by the strain-softening at cross-sections is resolved by the introduction of a `short constant-strain element'. Comparisons between numerical and experimental results on planar frames in pre- and post-critical states show both good accuracy and computational efficiency of the present formulation. (C) 2004 Elsevier Ltd. All rights reserved

    New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures

    Get PDF
    The behavior of reinforced concrete (RC) structures under severe demands, as strong ground motions, is highly complex; this is mainly due to joint operation of concrete and steel, with several coupled failure modes. Furthermore, given the increasing awareness and concern for the important seismic worldwide risk, new developments have arisen in earthquake engineering. Nonetheless, simplified numerical models are widely used (given their moderate computational cost), and many developments rely mainly on them. The authors have started a long-term research whose final objective is to provide, by using advanced numerical models, solid basis for these developments. Those models are based on continuum mechanics, and consider Plastic Damage Model to simulate concrete behavior. Within this context, this paper presents a new methodology to calculate damage variables evolution; the proposed approach is based in the Lubliner/Lee/Fenves formulation and provides closed-form expressions of the compressive and tensile damage variables in terms of the corresponding strains. This methodology does not require calibration with experimental results and incorporates a strategy to avoid mesh-sensitivity. A particular algorithm, suitable for implementation in Abaqus, is described. Mesh-insensitivity is validated in a simple tension example. Accuracy and reliability are verified by simulating a cyclic experiment on a plain concrete specimen. Two laboratory experiments consisting in pushing until failure two 2-D RC frames are simulated with the proposed approach to investigate its ability to reproduce actual monotonic behavior of RC structures; the obtained results are also compared with the aforementioned simplified models that are commonly employed in earthquake engineering.Postprint (published version
    • …
    corecore