3 research outputs found

    Commuting by Customized Bus: A Comparative Analysis with Private Car and Conventional Public Transport in Two Cities

    Full text link

    Redesigning Large-Scale Multimodal Transit Networks with Shared Autonomous Mobility Services

    Full text link
    Public transit systems have faced challenges and opportunities from emerging Shared Autonomous Mobility Services (SAMS). This study addresses a city-scale multimodal transit network design problem, with shared autonomous vehicles as both transit feeders and a direct interzonal mode. The framework captures spatial demand and modal characteristics, considers intermodal transfers and express services, determines transit infrastructure investment and path flows, and designs transit routes. A system-optimal multimodal transit network is designed with minimum total door-to-door generalized costs of users and operators, while satisfying existing transit origin-destination demand within a pre-set infrastructure budget. Firstly, the geography, demand, and modes in each clustered zone are characterized with continuous approximation. Afterward, the decisions of network link investment and multimodal path flows in zonal connection optimization are formulated as a minimum-cost multi-commodity network flow (MCNF) problem and solved efficiently with a mixed-integer linear programming (MILP) solver. Subsequently, the route generation problem is solved by expanding the MCNF formulation to minimize intramodal transfers. To demonstrate the framework efficiency, this study uses transit demand from the Chicago metropolitan area to redesign a multimodal transit network. The computational results present savings in travelers' journey time and operators' costs, demonstrating the potential benefits of collaboration between multimodal transit systems and SAMS.Comment: 44 pages, 15 figures, under review for the 25th International Symposium on Transportation and Traffic Theory (ISTTT25
    corecore