3,648,750 research outputs found

    Boundary reduction formula

    Get PDF
    An asymptotic theory is developed for general non-integrable boundary quantum field theory in 1+1 dimensions based on the Langrangean description. Reflection matrices are defined to connect asymptotic states and are shown to be related to the Green functions via the boundary reduction formula derived. The definition of the RR-matrix for integrable theories due to Ghoshal and Zamolodchikov and the one used in the perturbative approaches are shown to be related.Comment: 12 pages, Latex2e file with 5 eps figures, two Appendices about the boundary Feynman rules and the structure of the two point functions are adde

    Testing formula satisfaction

    Get PDF
    We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size

    Generalised Fluctuation Formula

    Full text link
    We develop a General Fluctuation Formula for phase variables that are odd under time reversal. Simulations are used to verify the new formula.Comment: 10 pages, 5 figures, submitted to Procedings of the 3rd Tohwa University International Conference of Statistical Physics, Nov 8-12, 1999 (AIP Conferences Series

    Generalized Goldberg Formula

    Get PDF
    In this paper we prove a useful formula for the graded commutator of the Hodge codifferential with the left wedge multiplication by a fixed pp-form acting on the de Rham algebra of a Riemannian manifold. Our formula generalizes a formula stated by Samuel I. Goldberg for the case of 1-forms. As first examples of application we obtain new identities on locally conformally Kaehler manifolds and quasi-Sasakian manifolds. Moreover, we prove that under suitable conditions a certain subalgebra of differential forms in a compact manifold is quasi-isomorphic as a CDGA to the full de Rham algebra.Comment: 12 pages, accepted for publication in the Canadian Mathematical Bulleti
    corecore