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Abstract. In this paper we prove a useful formula for the graded commutator of the Hodge codif-
ferential with the left wedge multiplication by a fixed p-form acting on the de Rham algebra of a
Riemannian manifold. Our formula generalizes a formula stated by Samuel I. Goldberg for the case
of 1-forms. As first examples of application we obtain new identities on locally conformally Kéhler
manifolds and quasi-Sasakian manifolds. Moreover, we prove that under suitable conditions a cer-
tain subalgebra of differential forms in a compact manifold is quasi-isomorphic as a CDGA to the
full de Rham algebra.

Introduction

Since the beginnings of differential geometry the importance of formulae that relate
various differential objects on a manifold has been apparent. Let us mention among
others the Bianchi identities, Weitzenbdck formulae, and Frélicher-Nijenhuis calcu-
lus. It should be noted that all the above results can be obtained by elementary, al-
though long and tedious, computations. Their importance lies in the psychological
and practical plane, as they permit us to work with the quantities in question without
undergoing error-prone calculations, thus forming a swiss-army-knife kit for a differ-
ential geometer. In this article we prove a formula that we hope will deserve a place
in the kit.

Let (M, g) be a Riemannian manifold. As usual, Q* (M) denotes the de Rham
algebra of differential forms on M and 8: Q*(M) — Q*7'(M) denotes the Hodge
codifferential. Given a k-form w, we denote by €, the operator on Q* (M) defined by
€00 = w0, for every 6 € Q! (M). In Theorem 3.2, we prove the following expression
for the graded commutator of § with €, in terms of Frolicher-Nijenhuis operators (to
be defined later)

(1.1) [(S,Ew] = €50 — Lw# - (—l)kiwo.

Here, w* € Q¥"1(M, TM) denotes the vector valued form obtained from w € Q¥ (M)
by metric contraction on the last coordinate, and w® € Q¥(M, TM) is a vector valued
k-form defined in Section 3.
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2 A. De Nicola and I. Yudin

Let & be a vector field and # its metric dual 1-form. In Corollary 3.3 we show that
in this case Formula (1.1) takes the form

(1.2) {0,eq} + L =€sy +i(s0)

where the curly bracket denotes the anticommutator. Equation (1.2) was stated by
Goldberg in [9] and [10, p. 109]. In both cases, Goldberg refrained from explicitly
proving this result. Nevertheless, he proved a partial case of (1.2) on [10, pp. 110-111]
under the condition that & generates a flow of conformal transformations. The absence
of a published proof may be one of the reasons that equation (1.2) is not widely known.

Let us give a simple example of use of (1.1). Let (M, g, J) be a Kahler manifold and
let Q(X,Y) = g(X,]Y) be its fundamental 2-form. Then Q* = ] is parallel and Q
is closed and coclosed. One gets easily that the associated vector valued 2-form Q°
vanishes (see equation (3.9)). Thus, (1.1) becomes

(1.3) [6,eq] +L5=0.
Upon complexification of Q* (M), we can write d = 9 + d with
0: QPI(M) — QPY(M),  0:QPI(M) — QP M),
Since ij = (p — q)if for all B € QP 1(M), we get that
LB =i d]p = [iy,9+ 9] = ~i(d - 9)p.

Thus, [8,eq] — d° = 0, where d° = i(0 — @). This is of course a well-known formula
in Kéhler geometry, but usually it takes several pages of local computations to prove
it.

In Theorem 3.4 we show the importance of the condition
(1.4) [8,60] + Lo =0

for a p-form w. Namely, we prove that if (1.4) holds for all w € S, where S is a subset of
the de Rham algebra Q* (M) of a Riemannian manifold (M, g), then the subalgebra

Qp, (M) ={B|Lysf=0, weS}

of Q* (M) is quasi-isomorphic to Q* (M) as a commutative differential graded alge-
bra (CDGA), with the quasi-isomorphism given by the embedding. Then the coho-
mology ring of Q7. | (M) is isomorphic to the de Rham cohomology ring of M. Note
that in the case where M is Kihler manifold, the above-mentioned quasi-isomorphism
is the first step in the proof of formality of Kahler manifolds given in [4].

Employing our formula, in Theorem 3.5 we give a complete characterization of
all forms w that satisfy the condition (1.4). Namely, we prove that a p-form w on a
Riemannian manifold (M, g) satisfies (1.4) if and only if one of the following cases
holds:

(a) p=1and v is a Killing vector field;
(b) p>2and w is parallel.

In Section 4 we consider the case of locally conformal Kéhler manifolds. By ap-
plying formula (1.1), we get the following result, which in a sense generalizes equa-
tion (1.3). Let (M, ], g) be a locally conformal Kihler manifold with fundamental

S

Note: Equation numbers
that are not referenced may
have been removed.
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2-form Q, Lee 1-form 6, and anti-Lee 1-form #. Then for any p-form f3 we have

[0,ealp=(p—m)nnp—-Lif+QnigP.
Finally, in Section 5 we show how our formula works in the context of quasi-

Sasakian manifolds. In Theorem 5.1 we prove the following result. Let (M, ¢, &, 1, g)
be a quasi-Sasakian manifold and let A := —¢ o V&. Then

(1.5) [0,e0] = —tr(A)e, — Lg + 2€yia.

The special case of formula (1.5) for Sasakian manifolds was first proved by Fujitani [8]
by complicated computation in local coordinates. This formula was crucial for the
proof of the main result in our recent article [3] on the hard Lefschetz theorem for
Sasakian manifolds. We hope that (1.5) will allow us to obtain a suitable generalization
of the hard Lefschetz theorem for quasi-Sasakian manifold.

2 Preliminaries

In this section we remind the reader of some notions and results of Frolicher-Nijen-
huis calculus [6,7], which will be used later.

A commutative differential graded algebra (A, d) (CDGA for short) is a graded al-
gebra A = @y,¢ A over R such that for all x € Ay and y € A; we have

xy=(-1)"yx,

together with a differential d of degree one such that d(xy) = d(x)y + (-1)*xd(y)
and d? = 0. Let M be a smooth manifold of dimension #. Then the direct sum

Q*(M) := éak(M)

is a CDGA with the multiplication given by the wedge product A and the differential
given by the exterior derivative d: Q¥ (M) — QF*1(M).

Let (A, d) be a CDGA. We say that a linear operator D: A — A is a derivation of
degree p if D(Ay) c A, for all k, and

D(xy) = D(x)y + (-1)**xD(y)
forallx e Ay and y € A;.
We write Q% (M, TM) for the space of skew-symmetric TM-valued k-forms on M.

Denote by 2, the permutation group on {1,...,m}. For k and s such that k + s = m,
let Shy, ¢ be the subset of (k, s)-shuffles in %,,. Thus for o € Shy s, we have

d(1)<a(2)<---<a(k), olk+1)<---<a(k+s).
Let ¢ € OF (M, TM). We define the operator iy of degree p —10on Q* (M) by

(i¢w)(Y1, cees Yp+k—1) =
E (D (@Yo Ya(p) Yapeys - > Yo(pekon) ) »

oeShy k1

where w € QF(M). The Lie derivative £ is an operator of degree p on Q*(M)
defined as the graded commutator [ig4, d].

S
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4 A. De Nicola and I. Yudin

We now recall the fundamental theorem of Frolicher—Nijenhuis calculus.

Theorem 2.1 ([6]) Let D:Q*(M) — Q* (M) be a derivation of degree p. Then there
are unique ¢ € QP (M, TM) and y € QP*' (M, TM) such that D = L + iy,.

As a consequence of the above theorem, we get the following:

(a) Ifa TM-valued p-form ¢ is different from 0, then iy # 0.
(b) IfD: Q* (M) — Q*(M) isaderivation such that [ D, d] = 0, then there is a unique
¢ € QP (M, TM) such that D = L.

For a k-form w € QF(M) and TM-valued p-form ¢, we define the TM-valued
(p + k)-form wA¢ by

(0Ad)(Yi,..os Ypuk) = SZh (D)0 Yoy -+ > Yo(k) )P (Yo (ks1)s - - > Yo(kip))-
€ k.p

[
Following [7], we will define the contraction (sometimes called trace) operator
C: QP (M, TM) — QP7Y(M)

as follows. Every ¢ € QF (M, TM) can be written locally as a finite sum ¥ ;.; w;AX;,
where X; are vector fields and w; € Qf (M). Then

C(¢) = Zlixiwi.

One can check that C(¢) does not depend on the choice of the local presentation
for ¢. We will use the following property [7, eq. (2.12)]:

2.1) C(w A ¢) = (-1)FwnC(¢) + (-1)F Py
for any w € QF(M) and ¢ € QF (M, TM). Given w € Q% (M), we define

€0: QP (M, TM) — QP**(M, TM)

¢ — wA.

For an operator A: Q* (M) - Q*(M) and w € Q* (M), we abbreviate the composi-
tion €, o Aby w A A. It is easy to check that w A iy = igng.
We will need the following fact.

Proposition 2.2 Let M be a smooth manifold, w € Q% (M), and ¢ € QP (M, TM).
Then

w AN L¢ = La)/\gb - (—l)p+ki(dw)/\¢.
Proof The computation

,Cw,\qg = [iwA¢,d:| = [w N 1¢,d] = (—l)k+P(d(A)) N l¢ +wA L¢

proves the claim. ]

e
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3 Generalized Goldberg Formula

In this section we prove the main result of the article. Let M be a smooth manifold
equipped with a Riemannian metric g and let V denote the corresponding Levi-Civita
connection. Using V, we can define the map

av:Qf (M, TM) - Q' (M, TM)
similarly to the standard exterior derivative, as follows
p+1 1 =
AVo(Yi,....Yp) = X (-1 'Vy (¢(Yi,..., Yoo, Vo))

s=1

+ Z(_1)5+t¢([YS)Yt]>YI>-~~:’Y\S’~'-)’Y\t:-~-’Yp+1)'

s<t

Since for the Levi-Civita connection we have [Y,Z] = VyZ — VY, one can easily
check that

+1 _
G (@) (Yoo Vo) = X () (T1,8)(Fire s T Yyt).

s=1

Moreover, note that dV is related to the Riemann curvature by the formula

(dV)?¢(Y,..., Ypp2) = SZh (-1 R(Yo1)> Yo2)) ((Yo(3)s - - -» Yo(pen))) -

eShy,
For w € Q¥(M) and ¢ € QP (M, TM), we have
dV(wng) = (dw)rg + (-1) wr(dV ¢).
Note that for any vector field X € Q°(M, TM), we get
dVX(Y)=vyX.

Hence, dV X = VX. Thus, we can think about V-parallel vector fields as a generaliza-
tion of harmonic functions. For any k-form w and any vector field X, we get

wa =Vxw+ ivxw.

In other words Vx = Lx — izvx. This equation suggests the following generalization
of the covariant derivative. Namely, for ¢ € QF (M, TM), we define

(32) Ve =Ly = (—1)Pigvg.
We get
w A V¢ =wA £/¢ —wAN idvrp = fzw,\qg - (—l)p”(l'(dw)/\gb — (—l)piw/\dv¢
= mep - (_1)p+kidw/\¢+(—1)kwAdV¢ = Lw/\gb - (—1)p+kidV(w,\¢)

thatis, w A V¢ = Vnae. This equation is a generalization of the property fVx = V¢x
for the usual covariant derivative, where f € C*°(M) and X € Q°(M, TM).

The Hodge codifferential is abstractly defined as the Hodge dual of the operator d
on Q. It is well known that given a local orthonormal frame Xj, ..., X, on U c M,
the following local expression for the codifferential holds

n
SZ_ZiX,OVXp
t=1
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Since both iy, and Vy, are derivations of Q*(U), we see that § is a differential oper-
ator of order 2 on Q*(U), and thus also on Q* (M).

Let w € QF(M). Then [§,¢€,] is a differential operator of order 1 and of degree
p—1on Q*(M). Thus, it can be expressed in a unique way as a sum €, + V¢ + iy, for
suitable (p —1)-form «, TM-valued (p —1)-form ¢, and TM-valued (p +1)-form y.
Our aim is to identify «, ¢, and v for a given w.

For w € QP (M), we define w* € QP"1(M, TM) and wV € QF (M, TM) by

=

(ix,w)AX: wV = Y (Vx,@)AX;.
1

M=

(3.3) W' =

-
Il

1

-
|

It is easy to see that w* and wV do not depend on the choice of the orthonormal
frame Xy, ..., X,,. Therefore, w* and w" are well defined. By applying the contraction
operator C to (3.3), we get

(3.4) C(w*) = z i%w=0,
t=1

(35) Cl0¥) = 3 ix,Vx,0 = 8.
t=1

Proposition 3.1 Forany w € QP (M), we have dV (w*) + (dw)* = wV.

Proof LetXj,...,X,beanorthonormal frame onan open set U in M. By definition
of wV and the Leibniz rule for dV, we get

(3.6) 4% (0*) = ¥ d(ix, )AX; + (-1)P1S ix 0AVX,.
t=1 t=1
Further,
(3.7) (dw)* = i ix,(dw)rX;.
t=1

Note that for every 1 < ¢ < n, we have
d(l‘xta)) + iXt(dCU) = thw = thw + l‘vxtw.

Therefore, summing (3.6) with (3.7), we get

n n n
dV(w®) + (do)* = ¥ Vx,0rX; + ¥ igx,0AX; + (-1)P7' Y ix, AV X,
t=1 t=1 t=1
n 1 n
=0V + Y igx,0n X, + ()P Y ix, AV X;.
t=1 t=1
Let us denote the expression
n n
Y ipx,0AX, + (-1)P Y ix, oAV X,
t=1 t=1

by T. Since T = dV (w*) + (dw)* — wV, we see that T does not depend on the choice
of the orthonormal basis X, ..., X,, and that T is a tensor on M. Let x € M. Then
there is an local orthonormal frame X3, ..., X,, on an open neighbourhood of x such
that (VX;), = 0 for every 1 < ¢t < n. Computing T, with respect to this basis, we see
that T, = 0. Since x is an arbitrary point of M, we see that T = 0. ]

e
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Let us define for every w € QP (M) the TM-valued form

w® =dv (") + V.
Note that by Proposition 3.1 we can write it in two other ways:
(3.8) w® =2dV (0*) + (dw)?,
(3.9) w® =2w" - (dw)*.
Now (3.4) and (3.5) give the following expression for dw in terms of w°:
(3.10) dw = —% C(w®).

e

We can now prove the announced formula, (1.1), for the commutator of the codiffer-

Note: “(1.1)” inserted.

ential with the left wedge multiplication by a k-form.

Theorem 3.2 Let w € QP (M). Then

(3.11) [0,€0] = €50 — Var — (-1)Pi,v,
ot, using the Lie derivative instead of the covariant derivative,
(3.12) [6,€60] = €50 — Lot — (=1)Pigeo.

Proof Let X be a vector field and w € QP (M). Then
[ixoVx,€u] =[ix-€0] o Vx +ixo[Vx,€n]
= €ixo VX T iXEyyw
= €iyo Vx + [ix>€yy0] + (_1)P€waiX
= Vigonx * €ixvxo + (-1)Pey 0ix
= €ixvxw + Vigonx + (-1)Pig anx.

Now (3.11) follows by substituting X instead of X and summing up over ¢.
Since w* € QP (M, TM), from (3.2) we get

Vot = Lw# - (—I)P_ll'dv(wx) = Lw" + (—I)PidV(wx).

Therefore,

[8,€w] = €50 — Lot —(—l)‘p(idv(w#) +iwv). |

As a corollary we can get [9, Formula (4)] in Goldberg’s article.

Corollary 3.3  Let & be a vector field on a Riemannian manifold M and let n be its
metric dual 1-form. Then n° = (L¢g)*; that is,
(3.13) {8,6”}+L,§=€5n +i(55g)»,
where { -, - } denotes the anti-commutator of operators and (L¢g)* is the metric con-

traction of the (0,2)-tensor L¢g.

Proof We have to check that dV#* + #V = (L¢g)*. Since ¥ = & we have for any
vector field Y,

(3.14) @7 7*)(Y) = (dVE)(Y) = Vyé = gg(xt,vys)xt,
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where X, ..., X, is alocal orthonormal frame on M. Further,
(3.15) v (Y) = Z(VXtﬂ)(Y)Xt Zg(vX,f Y)X,.

It is well known that

(Leg)(Y,Z2) =g(Vyé Z) + (& V2E)
for any vector fields &, Y, and Z. Therefore, adding (3.14) and (3.15), we get

(dvfﬂvv)(Y)— (Lfg)(Xt’Y)Xt (Leg)" (). L]

Let S be a set of differential forms on M. We will denote by S* the set of vector
valued forms w”, where w € S. Further, we write Qr y (M) for the intersection of the
kernels of operators £+, w € S. \

Recall that a morphism of CDGAs is a morphism of algebras that preserves the
degree and commutes with the differentials. Let f:(A,d) — (B, d) be a morphism
of CDGAs. For every k > 0, the map f induces a morphism between the k-th coho-
mologies

H*(f): H*(4) — H*(B).
If all the morphisms H*( f) are isomorphisms, then f is called a quasi-isomorphism
of CDGAs.

We have the following theorem that generalizes several known facts.

Theorem 3.4 Let (M, g) be a compact Riemannian manifold. Suppose S ¢ Q* (M)
is such that [,€, ] + Lo+ = 0 for all w € S. Then the inclusion

Q3 (M) > Q* (M)
is a quasi-isomorphism of CDGAs.

Proof Letw € S. Since [8,€,]+ L, = 0and 82 = 0, we get that
(6, L] =—[8,[8,€0]] =0.

Since the Hodge Laplacian A is the graded commutator of d and §, we have also that
(A L] -

Let be a harmomc p-form. We are going to show that f3 € QP ,(M). This w1ll
imply by Hodge theory that j induces a surjection in cohomology. Slnce [A, L] =
for all w € S, we get immediately that A(L,+f) = 0, i.e., L,+f is harmonic. But
since B is closed, we have that £ ¢ = di,+ 8 is an exact form. Thus, by Hodge theory,
LB =0.

It is left to show that j induces an injection in cohomology. Let 3 € QF, , (M) such
that [8] = 0in HP (M). Then 8 = dG8p, where G is the Green operator for A. We are
going to show that G4 € QP . (M). For this, it is enough to prove that £,,+G = GL ¢
for every w € S. In fact, then

LGP =GoLyf=0, VYwes.

e



ﬁ} DRAFT: Canad. Math. Bull. February 2, 2016 14:16 File: denicolaB2929pp. 1-13 Page 9 Sheet 9 of 13 ﬁ}

S

46__

48__

Generalized Goldberg Formula 9
We have
(3.16) I1-GA=Tl,, I1-AG=Tl,,

where IT, is the orthogonal projection on the set of harmonic forms. Now we multiply
the equation £ ,+A = AL+ by G on the left and right-hand sides. We get

GL 4t AG = GAL +G.
Applying (3.16), we obtain

GLyr — GL T = £+ G — TIaL 4+ G.

As we saw above, £+ annihilates harmonic forms, hence £ ,+II5 = 0. To finish the
proof it is enough to check that ITy £+ = 0. Let « € Q% (M). By Hodge theory, we can
write o as s + o + o4, Where a5 is in the image of 8, a4 is in the image of d, and a4 is
harmonic. Note that £ +as = 0. Further, £ ,+ay = +di,» a4, where the sign depends
on the degree of w. In particular, £+« is exact, and therefore ITp £ ,+ oy = 0. Finally,
since [8,€,] + Lor = 0, we get

Lorasg=—[0,€p]as=-0(wA as).
Hence, £ ,+ a5 is a coexact form, and thus ITp £ a5 = 0. [ |

The previous theorem shows the importance of the property [§, w] + £+ = 0 for a
differential form w. In the following theorem we characterize all the forms with this

property.

Theorem 3.5 Let (M, g) be a Riemannian manifold and w a p-form on M, with
p 21 Then [8,€e,] + Lo+ = 0 if and only if one of the following conditions holds:

(i) p=1and " is a Killing vector field;

(ii) p>2andw is parallel.

Proof Let us first consider the case p = 1. Suppose £ = w* is Killing. Then
Leg = 0. By Corollary 3.3, we have w® = (Lgg)* = 0. Applying (3.10), we get
dw = -3 C(w®) = 0. By (3.13), we obtain that {6,€,} + £¢ = 0.

Now, suppose that {4, €, } + £ = 0. Then from (3.13), we have

(3.17) €sw T+ i(ﬁgg)” =0.

Applying (3.17) to the constant function with the value 1, we get dw = 0. Thus i( ¢ ¢y¢ =
0. By Theorem 2.1, we have £ ;g = 0, and thus ¢ is a Killing vector field.
Now suppose p > 2 and Vw = 0. Then, by looking at defining formulae one readily
sees that 6w = 0, dw = 0, and w" = 0. Thus, by (3.12) we get that [8, €, ] + L = 0.
Finally, suppose that [J, €, ] + £+ = 0. Then by (3.12), we have

(3.18) €sw — (-1)Piye = 0.
Applying (3.18) to the constant function 1, we get that §w = 0. Therefore, i, = 0 and,
by Theorem 2.1, we have w® = 0. Using (3.9) and (3.3), we obtain

n n n
0=w®=Y2Vx,wAX, - Y ix,wAX; = ¥ (2Vx,0 - ix,dw)AX,
t=1 t=1 t=1

e
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2__

3 where X, ..., X, is a local orthonormal frame on M. Since X, ..., X, are linearly
4 independent at every point, we obtain that 2V x,w = ix,dw for all ¢. But this implies
5 that

6— (3.19) 2Vzw = izdw

7

8 for every vector field Z.

9 Let Yo, ..., Y, be vector fields. Then by using (3.19) we get
10— p s —
11 2(dw)(Yo,...,Yp) = ;0(—1) (2Vy,w)(Yo,..., Y, ..., Yp)
. ; )
13__ = Z(—l)s(iysd(l))(YO,...,YS,...,Yp)
14 s=0

p

12— = Zo(dw)(Yo,...,Yp):(p+1)dw(Y0,...,Yp).

J— s=
17— Since p # 1, we obtain dw = 0. Now (3.19) implies Vw = 0. [
18__
19 " .
0 4 Locally Conformal Kahler Manifolds
21— In this section, we show how Theorem 3.2 works in the context of locally conformal
2 Kihler manifolds.
23— Let (M*"*2, ¢) be a Riemannian manifold and let J be a complex structure on M.
24— Then (M, ], g) is called Hermitian if g(JX,JY) = g(X,Y) for all vector fields X,
25— Y on M. For an Hermitian manifold (M, J, g), we define its fundamental 2-form Q
26— by Q(X,Y) = g(X,JY). Thus, Q* = J. An Hermitian manifold (M, J, g) is called
27— locally conformal Kdihler (1.c.K.) if there exists a 1-form 6 (called the Lee form) such
28— that dQ = 0 A Q. We are going to apply Theorem 3.2 to w = Q. For this we have to
29— compute Q° and 6Q. We define # = i;0. It is proved in [5, Corollary 1.1] that
30—
31 (V)Y = 2(n(Y)X-0(Y)JX - g(X.Y)n" - Q(X,Y)6").
32— Thus,
33 v
34 d ](X) Y) :(vX])Y_(VY])X
35 =1(n(MX-6(Y)JX - n(X)Y + 6(X)]Y - 2Q(X, Y)6%)
36
. = 1(-(nAId) (X, Y) + (0A])(X,Y)) - (QAB")(X, Y).
38__ Hence, we get
39 dV] =1(0A] - nald) - QA6".
:(1)* Using the definition of #, it is easy to check that
s (4.) (dQ)* = (6 A Q)F = QA" - 0AQ7 = QO - OA].
43— Thus, by (3.8)
44__
45 (4.2) Q° =2dV] + (dQ)* = —yAld - QA6*.
46— Moreover, due to (3.4), by contracting (4.1) we get
47__
e C(Qn8%) = C(6A))

O— —Q
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3 Hence by (3.10), we obtain from (4.2)
4_
. 60 =-1C(Q°%) = 1(C(ynld) + C(QAO%)) = 1(C(nAld) + C(0A])).
6__ Using (2.1), we have
7
8 C(yAld) =-C(Id)n + ign =-2n+2)y+n=-2n+1)n,
o__ C(6A])=-C())0+i;0 =n.
1(1)* Therefore,
1 8Q=1(n-2n+1)y) =-ny.
13 Applying Theorem 3.2, we get the following formula that in a sense generalizes equa-
14__ tion (1.3), which holds for Kihler manifolds.
15__
16— Theorem 4.1 Let (M,], g) be a locally conformal Kihler manifold. Let Q) be the
17 fundamental 2-form, 0 the Lee 1-form, and n = i;0. Then, for any p-form f, we have
18__
19__ [8,60][3:(p—f’l)l’]/\ﬁ—[:]ﬁ+0/\i9wﬁ.
20—
21__ . . .
o 5 Quasi-Sasakian Manifolds
23__ In this section we will show how Theorem 3.2 can be used to get useful formulae for
24__ commutators on quasi-Sasakian manifolds.
25__ Recall that an almost contact metric structure on a manifold M>"*! is a quadruple
26 (¢, & 1, g), where ¢ is an endomorphism of TM, & is a vector field, # is a 1-form, and
27 g is a Riemannian metric such that
28__
20 ¢ =-1ld+nef n(§) =1,
30 8(¢X,Y) = —g(X, ¢Y), n(X) = g(X, %),
31
32 for any vector fields X and Y. As a consequence, one easily gets that ¢(&) = 0 and
33 7o ¢ = 0. We define an almost complex structure ] on M x R by
34__ d d
o (%5 5) = (ex-fEnx) 2 ).,
36
37 where f is a smooth function on M x R. If ] is integrable, the almost contact metric
38 structure (¢, &, 1, g) on M is called normal. We define a 2-form @ by
39— O(X,Y) =g(X,¢Y), forany X,Y € X(M).
40
41 A normal almost contact metric structure (¢, £, 4, g) on M is called quasi-Sasakian
42 if @ is closed.
43 Let (M?"*!, ¢, &, 1, g) be a quasi-Sasakian manifold. We define A := —¢ o VE. We
44 are going to apply Theorem 3.2 to w = ®. For this we have to compute ®*, ®¢, and
45 8§®. From the definition of ®, we have that ®* = ¢. Since O is closed, from (3.8), we
46, get ®° =24V ¢. In [11] it was shown that
47
o (Tx$)Y = n(Y)AX - g(AX, V)&, g(AX,Y) = g(X, AY).
O— —Q
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Thus, by (3.1), we have

(dV)(X,Y) = (Vx¢)(Y) - (Vy¢)(X)
=n(Y)AX - g(AX, V)& - n(X)AY + g(X, AY)E = —(nAA) (X, Y).

Therefore,

(5.1) ®° = -25rA.

Further, by (3.10), we have

(5.2) 80 = -1 C(°) = C(yAA).

By (2.1), we have

(5.3) C(naA) = —nAC(A) +ian=-C(A)n +ian.

Since A = —¢ o V& and 5 0 ¢ = 0, combining (5.2) and (5.3), we finally get §® =
— C(A)n. Thus, by Theorem 3.2 and (5.1), we have

[6, Ecp] = _EC(A)q — L¢ + 1'2,1/\‘4.

Since A is an endomorphism of TM, we actually have C(A) = tr(A). Hence, we have
proved the following result.

Theorem 5.1 Let (M, ¢, &, 1, g) be a quasi-Sasakian manifold. Then
[0,e0] = —tr(A)e, — Lg + 2€yia.

The most important examples of quasi-Sasakian manifolds are co-Kéhler mani-
folds (see [2]) and Sasakian manifolds (see [1]). For every co-Kahler manifold, one
has V& = 0, and thus A = 0. Therefore, in co-Kahler case, we get [, €9 ] = —L ¢, which
could also have been achieved by using the fact that ¢ is parallel on a co-Kahler man-
ifold and Theorem 3.5.

For Sasakian manifolds, one has V& = —¢, and thus A = ¢* = —Id + yA¢&. Therefore
tr A = —2n in this case. Applying Theorem 5.1, we get

(5.4) [0,€4] = 2ne; — Lo + 26, (—i1a + €yi¢) = 2ne, — Ly — 26, i14.

Formula (5.4) was first proved by Fujitani in [8] by complicated computation in local
coordinates. This formula was crucial for some proofs in our recent article [3] on the
hard Lefschetz theorem for Sasakian manifolds. We hope that Theorem 5.1 will permit
us to find a suitable generalization of the Hard Lefschetz Theorem for quasi-Sasakian
manifold.
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