49,492 research outputs found

    Bearing-Based Distributed Control and Estimation of Multi-Agent Systems

    Full text link
    This paper studies the distributed control and estimation of multi-agent systems based on bearing information. In particular, we consider two problems: (i) the distributed control of bearing-constrained formations using relative position measurements and (ii) the distributed localization of sensor networks using bearing measurements. Both of the two problems are considered in arbitrary dimensional spaces. The analyses of the two problems rely on the recently developed bearing rigidity theory. We show that the two problems have the same mathematical formulation and can be solved by identical protocols. The proposed controller and estimator can globally solve the two problems without ambiguity. The results are supported with illustrative simulations.Comment: 6 pages, to appear in the 2015 European Control Conferenc

    Distributed scaling control of rigid formations

    Get PDF
    Recently it has been reported that biased range-measurements among neighboring agents in the gradient distance-based formation control can lead to predictable collective motion. In this paper we take advantage of this effect and by introducing distributed parameters to the prescribed inter-distances we are able to manipulate the steady-state motion of the formation. This manipulation is in the form of inducing simultaneously the combination of constant translational and angular velocities and a controlled scaling of the rigid formation. While the computation of the distributed parameters for the translational and angular velocities is based on the well-known graph rigidity theory, the parameters responsible for the scaling are based on some recent findings in bearing rigidity theory. We carry out the stability analysis of the modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year 201

    Bearing-Based Formation Maneuvering

    Full text link
    This paper studies the problem of multi-agent formation maneuver control where both of the centroid and scale of a formation are required to track given velocity references while maintaining the formation shape. Unlike the conventional approaches where the target formation is defined by inter-neighbor relative positions or distances, we propose a bearing-based approach where the target formation is defined by inter-neighbor bearings. Due to the invariance of the bearings, the bearing-based approach provides a natural solution to formation scale control. We assume the dynamics of each agent as a single integrator and propose a globally stable proportional-integral formation maneuver control law. It is shown that at least two leaders are required to collaborate in order to control the centroid and scale of the formation whereas the followers are not required to have access to any global information, such as the velocities of the leaders.Comment: To appear in the 2015 IEEE Multi-Conference on Systems and Control (MSC2015); this is the final versio

    A Unified Dissertation on Bearing Rigidity Theory

    Full text link
    This work focuses on the bearing rigidity theory, namely the branch of knowledge investigating the structural properties necessary for multi-element systems to preserve the inter-units bearings when exposed to deformations. The original contributions are twofold. The first one consists in the definition of a general framework for the statement of the principal definitions and results that are then particularized by evaluating the most studied metric spaces, providing a complete overview of the existing literature about the bearing rigidity theory. The second one rests on the determination of a necessary and sufficient condition guaranteeing the rigidity properties of a given multi-element system, independently of its metric space

    Bearing-based formation control with second-order agent dynamics

    Full text link
    We consider the distributed formation control problem for a network of agents using visual measurements. We propose solutions that are based on bearing (and optionally distance) measurements, and agents with double integrator dynamics. We assume that a subset of the agents can track, in addition to their neighbors, a set of static features in the environment. These features are not considered to be part of the formation, but they are used to asymptotically control the velocity of the agents. We analyze the convergence properties of the proposed protocols analytically and through simulations.Published versionSupporting documentatio

    A distributed optimization framework for localization and formation control: applications to vision-based measurements

    Full text link
    Multiagent systems have been a major area of research for the last 15 years. This interest has been motivated by tasks that can be executed more rapidly in a collaborative manner or that are nearly impossible to carry out otherwise. To be effective, the agents need to have the notion of a common goal shared by the entire network (for instance, a desired formation) and individual control laws to realize the goal. The common goal is typically centralized, in the sense that it involves the state of all the agents at the same time. On the other hand, it is often desirable to have individual control laws that are distributed, in the sense that the desired action of an agent depends only on the measurements and states available at the node and at a small number of neighbors. This is an attractive quality because it implies an overall system that is modular and intrinsically more robust to communication delays and node failures
    • …
    corecore