12,338 research outputs found

    Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

    Full text link
    We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k>=1 door pixels Robots are primitive finite automata, only having local communication, local sensors, and a constant-sized memory. We first give algorithms for the single-door case (i.e., k=1), analyzing the algorithms both theoretically and experimentally. We prove that our algorithms have optimal makespan 2A-1, where A is the area of R. We next give an algorithm for the multi-door case (k>1), based on a wall-following version of the leader-follower strategy. We prove that our strategy is O(log(k+1))-competitive, and that this bound is tight for our strategy and other related strategies.Comment: 17 pages, 4 figures, Latex, to appear in Workshop on Algorithmic Foundations of Robotics, 200

    Design and implementation of a real-time autonomous navigation system applied to lego robots

    Get PDF
    Teaching theoretical concepts of a real-time autonomous robot system may be a challenging task without real hardware support. The paper discusses the application of the Lego Robot for teaching multi interdisciplinary subjects to Mechatronics students. A real-time mobile robot system with perception using sensors, path planning algorithm, PID controller is used as the case to demonstrate the teaching methodology. The novelties are introduced compared to classical robotic classes: (i) the adoption of a project-based learning approach as teaching methodology; (ii) an effective real-time autonomous navigation approach for the mobile robot. However, the extendibility and applicability of the presented approach are not limited to only the educational purpose

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • ā€¦
    corecore