13 research outputs found

    Formally sound implementations of security protocols with JavaSPI

    Get PDF
    Designing and coding security protocols is an error prone task. Several flaws are found in protocol implementations and specifications every year. Formal methods can alleviate this problem by backing implementations with rigorous proofs about their behavior. However, formally-based development typically requires domain specific knowledge available only to few experts and the development of abstract formal models that are far from real implementations. This paper presents a Java-based protocol design and implementation framework, where the user can write a security protocol symbolic model in Java, using a well defined subset of the language that corresponds to applied π-calculus. This Java model can be symbolically executed in the Java debugger, formally verified with ProVerif, and further refined to an interoperable Java implementation of the protocol. Soundness theorems are provided to prove that, under some reasonable assumptions, a simulation relation relates the Java refined implementation to the symbolic model verified by ProVerif, so that, for the usual security properties, a property verified by ProVerif on the symbolic model is preserved in the Java refined implementation. The applicability of the framework is evaluated by developing an extensive case study on the popular SSL protocol

    User-friendly Formal Methods for Security-aware Applications and Protocols

    Get PDF
    Formal support in the design and implementation of security-aware applications increases the assurance in the final artifact. Formal methods techniques work by setting a model that unambiguously defines attacker capabilities, protocol parties behavior, and expected security properties. Rigorous reasoning can be done on the model about the interaction of the external attacker with the protocol parties, assessing whether the security properties hold or not. Unfortunately, formal verification requires a high level of expertise to be used properly and, in complex systems, the model analysis requires an amount of resources (memory and time) that are not available with current technologies. The aim of this thesis is to propose new interfaces and methodologies that facilitate the usage of formal verification techniques applied to security-aware protocols and distributed applications. In particular, this thesis presents: (i) Spi2JavaGUI, a framework for the model-driven development of security protocols, that combines (for the first time in literature) an intuitive user interface, automated formal verification and code generation; (ii) a new methodology that enables the model-driven development and the automated formal analysis of distributed applications, which requires less resources and formal verification knowledge to complete the verification process, when compared to previous approaches; (iii) the formal verification of handover procedures defined by the Long Term Evolution (LTE) standard for mobile communication networks, including the results and all the translation rules from specification documents to formal models, that facilitates the application of formal verification to other parts of the standard in the future

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    From Computationally-proved Protocol Specifications to Implementations

    Get PDF
    International audienceno abstrac

    DY* : A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code

    Get PDF
    International audienceWe present DY*, a new formal verification framework for the symbolic security analysis of cryptographic protocol code written in the F* programming language. Unlike automated symbolic provers, our framework accounts for advanced protocol features like unbounded loops and mutable recursive data structures, as well as low-level implementation details like protocol state machines and message formats, which are often at the root of real-world attacks. Our work extends a long line of research on using dependent type systems for this task, but takes a fundamentally new approach by explicitly modeling the global trace-based semantics within the framework, hence bridging the gap between trace-based and type-based protocol analyses. This approach enables us to uniformly, precisely, and soundly model, for the first time using dependent types, long-lived mutable protocol state, equational theories, fine-grained dynamic corruption, and trace-based security properties like forward secrecy and post-compromise security. DY* is built as a library of F* modules that includes a model of low-level protocol execution, a Dolev-Yao symbolic attacker, and generic security abstractions and lemmas, all verified using F*. The library exposes a high-level API that facilitates succinct security proofs for protocol code. We demonstrate the effectiveness of this approach through a detailed symbolic security analysis of the Signal protocol that is based on an interoperable implementation of the protocol from prior work, and is the first mechanized proof of Signal to account for forward and post-compromise security over an unbounded number of protocol rounds

    Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif

    Get PDF
    International audienceProVerif is an automatic symbolic protocol verifier. It supports a wide range of cryptographic primitives, defined by rewrite rules or by equations. It can prove various security properties: secrecy, authentication, and process equivalences, for an unbounded message space and an unbounded number of sessions. It takes as input a description of the protocol to verify in a dialect of the applied pi calculus, an extension of the pi calculus with cryptography. It automatically translates this protocol description into Horn clauses and determines whether the desired security properties hold by resolution on these clauses. This survey presents an overview of the research on ProVerif

    Noise*: A Library of Verified High-Performance Secure Channel Protocol Implementations

    Get PDF
    International audienceThe Noise protocol framework defines a succinct notation and execution framework for a large class of 59+ secure channel protocols, some of which are used in popular applications such as WhatsApp and WireGuard. We present a verified implementation of a Noise protocol compiler that takes any Noise protocol, and produces an optimized C implementation with extensive correctness and security guarantees. To this end, we formalize the complete Noise stack in F * , from the low-level cryptographic library to a high-level API. We write our compiler also in F * , prove that it meets our formal specification once and for all, and then specialize it on-demand for any given Noise protocol, relying on a novel technique called hybrid embedding. We thus establish functional correctness, memory safety and a form of side-channel resistance for the generated C code for each Noise protocol. We propagate these guarantees to the high-level API, using defensive dynamic checks to prevent incorrect uses of the protocol. Finally, we formally state and prove the security of our Noise code, by building on a symbolic model of cryptography in F * , and formally link high-level API security goals stated in terms of security levels to low-level cryptographic guarantees. Ours are the first comprehensive verification results for a protocol compiler that targets C code and the first verified implementations of any Noise protocol. We evaluate our framework by generating implementations for all 59 Noise protocols and by comparing the size, performance, and security of our verified code against other (unverified) implementations and prior security analyses of Noise

    Preuves mécanisées de protocoles cryptographiques et leur lien avec des implémentations vérifiées

    Get PDF
    Cryptographic protocols are one of the foundations for the trust people put in computer systems nowadays, be it online banking, any web or cloud services, or secure messaging. One of the best theoretical assurances for cryptographic protocol security is reached through proofs in the computational model. Writing such proofs is prone to subtle errors that can lead to invalidation of the security guarantees and, thus, to undesired security breaches. Proof assistants strive to improve this situation, have got traction, and have increasingly been used to analyse important real-world protocols and to inform their development. Writing proofs using such assistants requires a substantial amount of work. It is an ongoing endeavour to extend their scope through, for example, more automation and detailed modelling of cryptographic building blocks. This thesis shows on the example of the CryptoVerif proof assistant and two case studies, that mechanized cryptographic proofs are practicable and useful in analysing and designing complex real-world protocols.The first case study is on the free and open source Virtual Private Network (VPN) protocol WireGuard that has recently found its way into the Linux kernel. We contribute proofs for several properties that are typical for secure channel protocols. Furthermore, we extend CryptoVerif with a model of unprecedented detail of the popular Diffie-Hellman group Curve25519 used in WireGuard.The second case study is on the new Internet standard Hybrid Public Key Encryption (HPKE), that has already been picked up for use in a privacy-enhancing extension of the TLS protocol (ECH), and in the Messaging Layer Security secure group messaging protocol. We accompanied the development of this standard from its early stages with comprehensive formal cryptographic analysis. We provided constructive feedback that led to significant improvements in its cryptographic design. Eventually, we became an official co-author. We conduct a detailed cryptographic analysis of one of HPKE's modes, published at Eurocrypt 2021, an encouraging step forward to make mechanized cryptographic proofs more accessible to the broader cryptographic community.The third contribution of this thesis is of methodological nature. For practical purposes, security of implementations of cryptographic protocols is crucial. However, there is frequently a gap between a cryptographic security analysis and an implementation that have both been based on a protocol specification: no formal guarantee exists that the two interpretations of the specification match, and thus, it is unclear if the executable implementation has the guarantees proved by the cryptographic analysis. In this thesis, we close this gap for proofs written in CryptoVerif and implementations written in F*. We develop cv2fstar, a compiler from CryptoVerif models to executable F* specifications using the HACL* verified cryptographic library as backend. cv2fstar translates non-cryptographic assumptions about, e.g., message formats, from the CryptoVerif model to F* lemmas. This allows to prove these assumptions for the specific implementation, further deepening the formal link between the two analysis frameworks. We showcase cv2fstar on the example of the Needham-Schroeder-Lowe protocol. cv2fstar connects CryptoVerif to the large F* ecosystem, eventually allowing to formally guarantee cryptographic properties on verified, efficient low-level code.Les protocoles cryptographiques sont l'un des fondements de la confiance que la société accorde aujourd'hui aux systèmes informatiques, qu'il s'agisse de la banque en ligne, d'un service web, ou de la messagerie sécurisée. Une façon d'obtenir des garanties théoriques fortes sur la sécurité des protocoles cryptographiques est de les prouver dans le modèle calculatoire. L'écriture de ces preuves est délicate : des erreurs subtiles peuvent entraîner l'invalidation des garanties de sécurité et, par conséquent, des failles de sécurité. Les assistants de preuve visent à améliorer cette situation. Ils ont gagné en popularité et ont été de plus en plus utilisés pour analyser des protocoles importants du monde réel, et pour contribuer à leur développement. L'écriture de preuves à l'aide de tels assistants nécessite une quantité substantielle de travail. Un effort continu est nécessaire pour étendre leur champ d'application, par exemple, par une automatisation plus poussée et une modélisation plus détaillée des primitives cryptographiques. Cette thèse montre sur l'exemple de l'assistant de preuve CryptoVerif et deux études de cas, que les preuves cryptographiques mécanisées sont praticables et utiles pour analyser et concevoir des protocoles complexes du monde réel. La première étude de cas porte sur le protocole de réseau virtuel privé (VPN) libre et open source WireGuard qui a récemment été intégré au noyau Linux. Nous contribuons des preuves pour plusieurs propriétés typiques des protocoles de canaux sécurisés. En outre, nous étendons CryptoVerif avec un modèle d'un niveau de détail sans précédent du groupe Diffie-Hellman populaire Curve25519 utilisé dans WireGuard. La deuxième étude de cas porte sur la nouvelle norme Internet Hybrid Public Key Encryption (HPKE), qui est déjà utilisée dans une extension du protocole TLS destinée à améliorer la protection de la vie privée (ECH), et dans Messaging Layer Security, un protocole de messagerie de groupe sécurisée. Nous avons accompagné le développement de cette norme dès les premiers stades avec une analyse cryptographique formelle. Nous avons fourni des commentaires constructifs ce qui a conduit à des améliorations significatives dans sa conception cryptographique. Finalement, nous sommes devenus un co-auteur officiel. Nous effectuons une analyse cryptographique détaillée de l'un des modes de HPKE, publiée à Eurocrypt 2021, un pas encourageant pour rendre les preuves cryptographiques mécanisées plus accessibles à la communauté des cryptographes. La troisième contribution de cette thèse est de nature méthodologique. Pour des utilisations pratiques, la sécurité des implémentations de protocoles cryptographiques est cruciale. Cependant, il y a souvent un écart entre l'analyse de la sécurité cryptographique et l'implémentation, tous les deux basées sur la même spécification d'un protocole : il n'existe pas de garantie formelle que les deux interprétations de la spécification correspondent, et donc, il n'est pas clair si l'implémentation exécutable a les garanties prouvées par l'analyse cryptographique. Dans cette thèse, nous comblons cet écart pour les preuves écrites en CryptoVerif et les implémentations écrites en F*. Nous développons cv2fstar, un compilateur de modèles CryptoVerif vers des spécifications exécutables F* en utilisant la bibliothèque cryptographique vérifiée HACL* comme fournisseur de primitives cryptographiques. cv2fstar traduit les hypothèses non cryptographiques concernant, par exemple, les formats de messages, du modèle CryptoVerif vers des lemmes F*. Cela permet de prouver ces hypothèses pour l'implémentation spécifique, ce qui approfondit le lien formel entre les deux cadres d'analyse. Nous présentons cv2fstar sur l'exemple du protocole Needham-Schroeder-Lowe. cv2fstar connecte CryptoVerif au grand écosystème F*, permettant finalement de garantir formellement des propriétés cryptographiques sur du code de bas niveau efficace vérifié

    A systematic development of a secure architecture for the European Rail Traffic Management System

    Get PDF
    The European Rail Traffic Management System (ERTMS) is a new signalling scheme that is being implemented worldwide with the aim of improving interoperability and cross-border operation. It is also an example of an Industrial Control System, a safety-critical system which, in recent years, has been subject to a number of attacks and threats. In these systems, safety is the primary concern of the system designers, whilst security is sometimes an afterthought. It is therefore prudent to assure the security for current and future threats, which could affect the safe operation of the railway. In this thesis, we present a systematic security analysis of parts of the ERTMS standard, firstly reviewing the security offered by the protocols used in ERTMS using the ProVerif tool. We will then assess the custom MAC algorithm used by the platform and identify issues that exist in each of the ERTMS protocol layers, and aim to propose solutions to those issues. We also identify a challenge presented by the introduction of ERTMS to National Infrastructure Managers surrounding key management, where we also propose a novel key management scheme, TRAKS, which reduces its complexity. We then define a holistic process for asset owners to carry out their own security assessments for their architectures and consider the unique challenges that are presented by Industrial Control Systems and how these can be mitigated to ensure security of these systems. Drawing conclusions from these analyses, we introduce the notion of a `secure architecture' and review the current compliance of ERTMS against this definition, identifying the changes required in order for it to have a secure architecture, both now and also in the future
    corecore