679 research outputs found

    Formalization of a Newton Series Representation of Polynomials

    Get PDF
    International audienceWe formalize an algorithm to change the representation of a polynomial to a Newton power series. This provides a way to compute efficiently polynomials whose roots are the sums or products of roots of other polynomials, and hence provides a base component of efficient computation for algebraic numbers. In order to achieve this, we formalize a notion of truncated power series and develop an abstract theory of poles of fractions

    Analysis of Reaction Network Systems Using Tropical Geometry

    Full text link
    We discuss a novel analysis method for reaction network systems with polynomial or rational rate functions. This method is based on computing tropical equilibrations defined by the equality of at least two dominant monomials of opposite signs in the differential equations of each dynamic variable. In algebraic geometry, the tropical equilibration problem is tantamount to finding tropical prevarieties, that are finite intersections of tropical hypersurfaces. Tropical equilibrations with the same set of dominant monomials define a branch or equivalence class. Minimal branches are particularly interesting as they describe the simplest states of the reaction network. We provide a method to compute the number of minimal branches and to find representative tropical equilibrations for each branch.Comment: Proceedings Computer Algebra in Scientific Computing CASC 201

    A verified Common Lisp implementation of Buchberger's algorithm in ACL2

    Get PDF
    In this article, we present the formal verification of a Common Lisp implementation of Buchberger's algorithm for computing Gröbner bases of polynomial ideals. This work is carried out in ACL2, a system which provides an integrated environment where programming (in a pure functional subset of Common Lisp) and formal verification of programs, with the assistance of a theorem prover, are possible. Our implementation is written in a real programming language and it is directly executable within the ACL2 system or any compliant Common Lisp system. We provide here snippets of real verified code, discuss the formalization details in depth, and present quantitative data about the proof effort

    Root finding with threshold circuits

    Get PDF
    We show that for any constant d, complex roots of degree d univariate rational (or Gaussian rational) polynomials---given by a list of coefficients in binary---can be computed to a given accuracy by a uniform TC^0 algorithm (a uniform family of constant-depth polynomial-size threshold circuits). The basic idea is to compute the inverse function of the polynomial by a power series. We also discuss an application to the theory VTC^0 of bounded arithmetic.Comment: 19 pages, 1 figur

    Enumerative Real Algebraic Geometry

    Get PDF
    Enumerative Geometry is concerned with the number of solutions to a structured system of polynomial equations, when the structure comes from geometry. Enumerative real algebraic geometry studies real solutions to such systems, particularly a priori information on their number. Recent results in this area have, often as not, uncovered new and unexpected phenomena, and it is far from clear what to expect in general. Nevertheless, some themes are emerging. This comprehensive article describe the current state of knowledge, indicating these themes, and suggests lines of future research. In particular, it compares the state of knowledge in Enumerative Real Algebraic Geometry with what is known about real solutions to systems of sparse polynomials.Comment: Revised, corrected version. 40 pages, 18 color .eps figures. Expanded web-based version at http://www.math.umass.edu/~sottile/pages/ERAG/index.htm
    corecore