72,086 research outputs found

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Partial plant models in formal verification of industrial automation discrete systems

    Get PDF
    The use of a plant model for formal verification of Industrial Automation systems controllers must be used in order to improve the obtained results. However, if there are some cases where the use of a plant model makes the formal verification results more realistic and robust, there are other cases where this does not always happen. The discussion presented in this paper is related with the need of using a Plant Model considering, not all of the Plant Model, but Partial Plant models in order to facilitate formal verification tasks of Industrial Automation Discrete Event Systems

    A Supervisory Control Algorithm Based on Property-Directed Reachability

    Full text link
    We present an algorithm for synthesising a controller (supervisor) for a discrete event system (DES) based on the property-directed reachability (PDR) model checking algorithm. The discrete event systems framework is useful in both software, automation and manufacturing, as problems from those domains can be modelled as discrete supervisory control problems. As a formal framework, DES is also similar to domains for which the field of formal methods for computer science has developed techniques and tools. In this paper, we attempt to marry the two by adapting PDR to the problem of controller synthesis. The resulting algorithm takes as input a transition system with forbidden states and uncontrollable transitions, and synthesises a safe and minimally-restrictive controller, correct-by-design. We also present an implementation along with experimental results, showing that the algorithm has potential as a part of the solution to the greater effort of formal supervisory controller synthesis and verification.Comment: 16 pages; presented at Haifa Verification Conference 2017, the final publication is available at Springer via https://doi.org/10.1007/978-3-319-70389-3_

    Control of Discrete Event Systems

    Get PDF
    Discrete Event Systems (DES) are a special type of dynamic systems. The state of these systems changes only at discrete instants of time and the term event is used to represent the occurrence of discontinuous changes (at possibly unknown intervals). Different Discrete Event Systems models are currently used for specification, verification, synthesis as well as for analysis and evaluation of different qualitative and quantitative properties of existing physical systems. The main focus of this paper is the presentation of the automata and formal language model for DES introduced by Raniadge and Wonham in 1985. This model is suitable for the examination of some important control theoretic issues, such as controllability and observability from the qualitative point of view, and provides a good basis for modular synthesis of controllers. We will also discuss an Extended State Machine and Real-Time Temporal Logic model introduced by Ostroff and Wonham in [OW87]. It incorporates an explicit notion of time and means for specification and verification of discrete event systems using a temporal logic approach. An attempt is made to compare this model of DES with other ones

    PRISM: a tool for automatic verification of probabilistic systems

    Get PDF
    Probabilistic model checking is an automatic formal verification technique for analysing quantitative properties of systems which exhibit stochastic behaviour. PRISM is a probabilistic model checking tool which has already been successfully deployed in a wide range of application domains, from real-time communication protocols to biological signalling pathways. The tool has recently undergone a significant amount of development. Major additions include facilities to manually explore models, Monte-Carlo discrete-event simulation techniques for approximate model analysis (including support for distributed simulation) and the ability to compute cost- and reward-based measures, e.g. "the expected energy consumption of the system before the first failure occurs". This paper presents an overview of all the main features of PRISM. More information can be found on the website: www.cs.bham.ac.uk/~dxp/prism

    A Probabilistic Extension of UML-B

    Get PDF
    This paper extends the graphical and formal language of UML-B to provide the ability to model probabilities. Discrete probabilities, interval probabilities, and stochastic delays are added to the UML-B's state-machine syntax, and their corresponding semantics are defined in Event-B. In addition, as a secondary contribution, UML-B (probabilistic) state-machine models are defined as MDP (Markov Decision Process) models in order to provide a means of quantitative verification in PRISM (Probabilistic Symbolic Model Checker). As an important feature of the proposed method, it does not change the Event-B syntax or semantics. To evaluate this work, as a case study, the Zeroconf protocol will be modeled in the extended UML-B using the Rodin tool, and its Event-B counterpart is converted to a PRISM model. The results of evaluations indicate that this study's additions provide the capability of modeling and verification of probabilistic and stochastic systems

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques

    Co-simulation of Event-B and Ptolemy II Models via FMI

    Get PDF
    In the framework of model-based design formal modelling, verification and simulation of safety-critical systems are supported by several methods and tools. Interfacing these tools often becomes challenging for heterogeneous systems. The FMI standard enables integration of different simulation tools through artefacts called Functional Mockup Units (FMU) [1]. The FMI standard is mainly based on the concept of scalability of the simulation as it deals with heterogeneous cyber-physical systems. The combination of discrete behaviour and continuous-time environment is a common case study in hybrid simulation. Moreover, another aspect of the FMI is to enhance the capability of the tools. Thus, a collaborative simulation between the Rodin [2] and Ptolemy [3] is leveraged by both platforms. While Event-B is enhanced by new models of computation of Ptolemy,Ptolemy leverages the expressivity and properties validation (theorem/invariant proofs) implemented by Event-B. The main rationale of the co-simulation between Event-B and Ptolemy relies on the intention of dissimilarity and complementarity of the modelling viewpoints. Event-B provides formal modelling by specifying conditions, actions and properties that manage discrete event behaviour, whereas Ptolemy gives a structural viewpoint in terms of actors, components or functions with relation to concerned behaviour. Thus, the association of Ptolemy and Event-B puts together structural and formal aspects.This paper focuses on the collaborative simulation of models supported by both Ptolemy II and Event-B. The ongoing work consists of the design of a diagrammatic co-simulation surface and its application to a controller case study

    DesyreML: a SysML profile for heterogeneous embedded systems

    Get PDF
    International audienceWe propose a novel language for the formal description of heterogeneous embedded systems (DesyreML). As the main contribution, the language is formally described in terms of semantics and concrete syntax based on the SysML language. We define the concept of thick connector to allow for heterogeneous components communication and computation for multiple semantic domains (synchronous reactive, continuous time, discrete time, discrete-event). As technological application, a verification flow based on model-transformation techniques is described showing the use of an enriched version of the SystemC-AMS simulation kernel that is capable of simulating heterogeneous systems containing combinatorial loops. Finally, the language and the analysis flow are applied to a cruise control case study
    • …
    corecore