4 research outputs found

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:F→Ef : \mathcal{F} \to \mathcal{E}, where H=f∗ΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    Squares of Oppositions, Commutative Diagrams, and Galois Connections for Topological Spaces and Similarity Structures

    Get PDF
    The aim of this paper is to elucidate the relationship between Aristotelian conceptual oppositions, commutative diagrams of relational structures, and Galois connections.This is done by investigating in detail some examples of Aristotelian conceptual oppositions arising from topological spaces and similarity structures. The main technical device for this endeavor is the notion of Galois connections of order structures

    Complement-Topoi and Dual Intuitionistic Logic

    Get PDF
    Mortensen studies dual intuitionistic logic by dualizing topos internal logic, but he did not study a sequent calculus. In this paper I present a sequent calculus for complement-topos logic, which throws some light on the problem of giving a dualization for LJ
    corecore