132,595 research outputs found

    Method of Information Security Risk Analysis for Virtualized System

    Get PDF
    The growth of usage of Information Technology (IT) in daily operations of enterprises causes the value and the vulnerability of information to be at the peak of interest. Moreover, distributed computing revolutionized the out-sourcing of computing functions, thus allowing flexible IT solutions. Since the concept of information goes beyond the traditional text documents, reaching manufacturing, machine control, and, to a certain extent – reasoning – it is a great responsibility to maintain appropriate information security. Information Security (IS) risk analysis and maintenance require extensive knowledge about the possessed assets as well as the technologies behind them, to recognize the threats and vulnerabilities the infrastructure is facing. A way of formal description of the infrastructure – the Enterprise Architecture (EA) – offers a multiperspective view of the whole enterprise, linking together business processes as well as the infrastructure. Several IS risk analysis solutions based on the EA exist. However, lack of methods of IS risk analysis for virtualization technologies complicates the procedure, thus leading to reduced availability of such analysis. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter introduces the problem of information security risk analysis and its’ automation. Moreover, state-of-the-art methodologies and their implementations for automated information security risk analysis are discussed. The second chapter proposes a novel method for risk analysis of virtualization components based on the most recent data, including threat classification and specification, control means and metrics of the impact. The third chapter presents an experimental evaluation of the proposed method, implementing it to the Cyber Security Modeling Language (CySeMoL) and comparing the analysis results to well-calibrated expert knowledge. It was concluded that the automation of virtualization solution risk analysis provides sufficient data for adjustment and implementation of security controls to maintain optimum security level

    The Effect of Security Education and Expertise on Security Assessments: the Case of Software Vulnerabilities

    Get PDF
    In spite of the growing importance of software security and the industry demand for more cyber security expertise in the workforce, the effect of security education and experience on the ability to assess complex software security problems has only been recently investigated. As proxy for the full range of software security skills, we considered the problem of assessing the severity of software vulnerabilities by means of a structured analysis methodology widely used in industry (i.e. the Common Vulnerability Scoring System (\CVSS) v3), and designed a study to compare how accurately individuals with background in information technology but different professional experience and education in cyber security are able to assess the severity of software vulnerabilities. Our results provide some structural insights into the complex relationship between education or experience of assessors and the quality of their assessments. In particular we find that individual characteristics matter more than professional experience or formal education; apparently it is the \emph{combination} of skills that one owns (including the actual knowledge of the system under study), rather than the specialization or the years of experience, to influence more the assessment quality. Similarly, we find that the overall advantage given by professional expertise significantly depends on the composition of the individual security skills as well as on the available information.Comment: Presented at the Workshop on the Economics of Information Security (WEIS 2018), Innsbruck, Austria, June 201

    An Empirical Study on Android-related Vulnerabilities

    Full text link
    Mobile devices are used more and more in everyday life. They are our cameras, wallets, and keys. Basically, they embed most of our private information in our pocket. For this and other reasons, mobile devices, and in particular the software that runs on them, are considered first-class citizens in the software-vulnerabilities landscape. Several studies investigated the software-vulnerabilities phenomenon in the context of mobile apps and, more in general, mobile devices. Most of these studies focused on vulnerabilities that could affect mobile apps, while just few investigated vulnerabilities affecting the underlying platform on which mobile apps run: the Operating System (OS). Also, these studies have been run on a very limited set of vulnerabilities. In this paper we present the largest study at date investigating Android-related vulnerabilities, with a specific focus on the ones affecting the Android OS. In particular, we (i) define a detailed taxonomy of the types of Android-related vulnerability; (ii) investigate the layers and subsystems from the Android OS affected by vulnerabilities; and (iii) study the survivability of vulnerabilities (i.e., the number of days between the vulnerability introduction and its fixing). Our findings could help OS and apps developers in focusing their verification & validation activities, and researchers in building vulnerability detection tools tailored for the mobile world

    Architecture-based Qualitative Risk Analysis for Availability of IT Infrastructures

    Get PDF
    An IT risk assessment must deliver the best possible quality of results in a time-effective way. Organisations are used to customise the general-purpose standard risk assessment methods in a way that can satisfy their requirements. In this paper we present the QualTD Model and method, which is meant to be employed together with standard risk assessment methods for the qualitative assessment of availability risks of IT architectures, or parts of them. The QualTD Model is based on our previous quantitative model, but geared to industrial practice since it does not require quantitative data which is often too costly to acquire. We validate the model and method in a real-world case by performing a risk assessment on the authentication and authorisation system of a large multinational company and by evaluating the results w.r.t. the goals of the stakeholders of the system. We also perform a review of the most popular standard risk assessment methods and an analysis of which one can be actually integrated with our QualTD Model
    corecore