29,671 research outputs found

    Automatic Transformation from SOFL Formal Specifications to Functional Scenario Forms for Verification and Validation

    Get PDF
    Abstract— Specification-based testing and inspection are two important techniques in the SOFL method for verifying programs, but both of them are established on the basis of the concept known as functional scenario form (FSF). In this paper, we describe how a SOFL formal specification can be automatically transformed into a FSF. The transformation is realized in four steps: lexical analysis of the formal specification, conversion from the specification to Reverse Polish Notation (RPN), transformation from RPN to Disjunctive Normal Form (DNF), and derivation of a FSF from the DNF. Our discussion focuses on the first three steps that have already been realized, but we will also discuss how an existing algorithm can be used for the conversion from the DNF to a FSF for verification and validation. We present the related algorithms and ilustrate them with examples. Finally, we evaluate our algorithms implemented in the tool by testing. Keywords— SOFL specification, Lexical Analyzer, RPN, DNF, FSF, verification and validatio

    Decentralized Runtime Verification of LTL Specifications in Distributed Systems

    Get PDF
    Runtime verification is a lightweight automated formal method for specification-based run- time monitoring as well as testing of large real-world systems. While numerous techniques exist for runtime verification of sequential programs, there has been very little work on specification- based monitoring of distributed systems. In this work, we propose the first sound and complete method for runtime verification of asynchronous distributed programs for the 3-valued semantics of LTL specifications defined over the global state of the program. Our technique for evaluating LTL properties is inspired by distributed computation slicing, an approach for abstracting distributed computations with respect to a given predicate. Our monitoring technique is fully decentralized in that each process in the distributed program under inspection maintains a replica of the monitor automaton. Each monitor may maintain a set of possible verification verdicts based upon existence of concurrent events. Our experiments on runtime monitoring of a set of iOS devices running a distributed program show that due to the design of our Algorithm, monitoring overhead grows only in the linear order of the number of processes and events that need to be monitored

    Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

    Full text link
    We present an approach to program reasoning which inserts between a program and its verification conditions an additional layer, the denotation of the program expressed in a declarative form. The program is first translated into its denotation from which subsequently the verification conditions are generated. However, even before (and independently of) any verification attempt, one may investigate the denotation itself to get insight into the "semantic essence" of the program, in particular to see whether the denotation indeed gives reason to believe that the program has the expected behavior. Errors in the program and in the meta-information may thus be detected and fixed prior to actually performing the formal verification. More concretely, following the relational approach to program semantics, we model the effect of a program as a binary relation on program states. A formal calculus is devised to derive from a program a logic formula that describes this relation and is subject for inspection and manipulation. We have implemented this idea in a comprehensive form in the RISC ProgramExplorer, a new program reasoning environment for educational purposes which encompasses the previously developed RISC ProofNavigator as an interactive proving assistant.Comment: In Proceedings THedu'11, arXiv:1202.453

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Procedures for management control of computer programming in Apollo

    Get PDF
    Procedures for management control of computer programming in Apollo projec

    Design verification of SIFT

    Get PDF
    A SIFT reliable aircraft control computer system, designed to meet the ultrahigh reliability required for safety critical flight control applications by use of processor replications and voting, was constructed for SRI, and delivered to NASA Langley for evaluation in the AIRLAB. To increase confidence in the reliability projections for SIFT, produced by a Markov reliability model, SRI constructed a formal specification, defining the meaning of reliability in the context of flight control. A further series of specifications defined, in increasing detail, the design of SIFT down to pre- and post-conditions on Pascal code procedures. Mechanically checked mathematical proofs were constructed to demonstrate that the more detailed design specifications for SIFT do indeed imply the formal reliability requirement. An additional specification defined some of the assumptions made about SIFT by the Markov model, and further proofs were constructed to show that these assumptions, as expressed by that specification, did indeed follow from the more detailed design specifications for SIFT. This report provides an outline of the methodology used for this hierarchical specification and proof, and describes the various specifications and proofs performed

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives
    corecore