3 research outputs found

    Contract Based Verification of IEC 61499

    Get PDF
    14th International Conference on Industrial Informatics (INDIN 2016). 18 to 21, Jul, 2016, Factory Automation. Poitiers, France.The IEC 61499 standard proposes an event driven execution model for component based (in terms of Function Blocks), distributed industrial automation applications. However, the standard provides only an informal execution semantics, thusin consequence behavior and correctness relies on the design decisions made by the tool vendor. In this paper we present the formalization of a subset of the IEC 61499 standard in order to provide an underpinning for the static verification of Function Block models by means of deductive reasoning. Specifically, we contribute by addressing verification at the component,algorithm, and ECC levels. From Function Block descriptions, enrichedwith formal contracts, we show that correctness of component compositions, as well as functional and transitional behavior can be ensured. Feasibility of the approach is demonstrated by manually encoding a set of representative use-cases in WhyML,for which the verification conditions are automatically derived (through the Why3 platform) and discharged (using automaticSMT-based solvers). Furthermore, we discuss opportunities and challenges towards deriving certified executables for IEC 61499 models.info:eu-repo/semantics/publishedVersio

    A system development methodology for embedded applications

    Get PDF
    In recent years, Singapore’s manufacturing sector has contributed more than a quarter of the total Gross Domestic Product (GDP) and has established global leadership positions in several manufacturing areas such as electronics, Information Technology (IT) and industrial automation. The Singapore Economic Review Committee (ERC) recommendation states that “software and embedded systems that drive products are one of the most important technologies for the manufacturing sector. “ With the increasing adoption of automated and intelligent products, embedded systems have emerged as a crucial technology for Singapore. However, the development of embedded applications is not a trivial undertaking as it can usually involve multi-discipline parties and different application platforms. Most embedded application developments use either vendor specific or desktop based methodologies. Vendor specific methodologies constrain the company to rely on the specific vendor's solutions, whereas desktop-based methodologies are not well suited to embedded application development. Therefore, this research aims to develop a standard-based system development methodology for embedded applications. The research programme comprises 5 stages. The first stage reviews the existing system development methodologies for embedded applications. The next stage formulates the proposed conceptual methodology followed by the development of the proof-of-concept tool to demonstrate the merits of the proposed approach. The methodology is then tested and evaluated respectively by using industrial experiments and feedback from a workshop. The final stage refines the methodology based on the feedback and presents the final system development methodology. The research has provided a sound foundation which future research in methodology for embedded applications to develop further.Eng

    A system development methodology for embedded applications

    Get PDF
    In recent years, Singapore’s manufacturing sector has contributed more than a quarter of the total Gross Domestic Product (GDP) and has established global leadership positions in several manufacturing areas such as electronics, Information Technology (IT) and industrial automation. The Singapore Economic Review Committee (ERC) recommendation states that “software and embedded systems that drive products are one of the most important technologies for the manufacturing sector. “ With the increasing adoption of automated and intelligent products, embedded systems have emerged as a crucial technology for Singapore. However, the development of embedded applications is not a trivial undertaking as it can usually involve multi-discipline parties and different application platforms. Most embedded application developments use either vendor specific or desktop based methodologies. Vendor specific methodologies constrain the company to rely on the specific vendor's solutions, whereas desktop-based methodologies are not well suited to embedded application development. Therefore, this research aims to develop a standard-based system development methodology for embedded applications. The research programme comprises 5 stages. The first stage reviews the existing system development methodologies for embedded applications. The next stage formulates the proposed conceptual methodology followed by the development of the proof-of-concept tool to demonstrate the merits of the proposed approach. The methodology is then tested and evaluated respectively by using industrial experiments and feedback from a workshop. The final stage refines the methodology based on the feedback and presents the final system development methodology. The research has provided a sound foundation which future research in methodology for embedded applications to develop further.Eng
    corecore