

Contract Based Verification of IEC 61499

Conference Paper

*CISTER Research Centre

CISTER-TR-161106

2016/07/18

David Pereira*

Luis Miguel Pinho*

Per Lindgren

Marcus Lindner

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83044302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conference Paper CISTER-TR-161106 Contract Based Verification of IEC 61499

© CISTER Research Center
www.cister.isep.ipp.pt

1

Contract Based Verification of IEC 61499

David Pereira*, Luis Miguel Pinho*, Per Lindgren, Marcus Lindner

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: dmrpe@isep.ipp.pt, lmp@isep.ipp.pt, per.lindgren@ltu.se

http://www.cister.isep.ipp.pt

Abstract

The IEC 61499 standard proposes an event drivenexecution model for component based (in terms of
FunctionBlocks), distributed industrial automation applications. However,the standard provides only an informal
execution semantics, thusin consequence behavior and correctness relies on the designdecisions made by the
tool vendor. In this paper we presentthe formalization of a subset of the IEC 61499 standard inorder to provide an
underpinning for the static verification ofFunction Block models by means of deductive reasoning. Specifically,we
contribute by addressing verification at the component,algorithm, and ECC levels. From Function Block
descriptions, enrichedwith formal contracts, we show that correctness of componentcompositions, as well as
functional and transitional behaviorcan be ensured. Feasibility of the approach is demonstrated bymanually
encoding a set of representative use-cases in WhyML,for which the verification conditions are automatically
derived(through the Why3 platform) and discharged (using automaticSMT-based solvers). Furthermore, we discuss
opportunities andchallenges towards deriving certified executables for IEC 61499models.

Contract Based Verification of IEC 61499

Per Lindgren and Marcus Lindner
Luleå University of Technology

Email:{per.lindgren, marcus.lindner}@ltu.se

David Pereira and Luís Miguel Pinho
CISTER / INESC TEC, ISEP

Email: {dmrpe, lmp}@isep.ipp.pt

Abstract—The IEC 61499 standard proposes an event driven
execution model for component based (in terms of Function
Blocks), distributed industrial automation applications. However,
the standard provides only an informal execution semantics, thus
in consequence behavior and correctness relies on the design
decisions made by the tool vendor. In this paper we present
the formalization of a subset of the IEC 61499 standard in
order to provide an underpinning for the static verification of
Function Block models by means of deductive reasoning. Specifi-
cally, we contribute by addressing verification at the component,
algorithm, and ECC levels. From Function Block descriptions, en-
riched with formal contracts, we show that correctness of compo-
nent compositions, as well as functional and transitional behavior
can be ensured. Feasibility of the approach is demonstrated by
manually encoding a set of representative use-cases in WhyML,
for which the verification conditions are automatically derived
(through the Why3 platform) and discharged (using automatic
SMT-based solvers). Furthermore, we discuss opportunities and
challenges towards deriving certified executables for IEC 61499
models.

I. INTRODUCTION

The IEC 61499 standard offers an event driven execution
model for distributed control applications. In the standard, the
execution semantics is informally described. In consequence,
the run-time behavior emerges from the specific interpretations
of the execution semantics underlying the tool chain at hand.
In consequence, correctness can only be argued from a deploy-
ment perspective, and not at the model level, with adversative
implications to portability, inter-operability and re-use of IEC
61499 models. The standard was first established 2005 and
later refined in 2012 [7] with the aim of addressing ambiguities
documented in, e.g., [5], [10]. However, issues still remain as
is indicated by [16].

Already in [19], the need for formal methods to verify
IEC 61499 models was identified. One way to address the
issue of the correctness of IEC 61449 models is via static
verification. If applied in the early stages of the design process
inconsistencies of the specifications involved may be revealed,
thus tedious re-iterations involving implementation, testing and
debugging can be avoided. Furthermore, a static verification
approach that embodies on the principles of design by con-
tract [15] facilitates modular and compositional verification
and enable an incremental design process allowing safe re-
use of specifications (and accompanying implementations)
in different settings. This becomes specially appealing for
component based models such as IEC 61499. Despite the
aforementioned advantages, design by contract based methods
and tools have not yet reached the mainstream of industrial
software development.

In this paper we outline and advocate an approach along
the lines of deductive reasoning with potential to be automated

down to a single click solution for verification the composition
of Function Blocks that individually satisfy their contracts.
We also discuss and demonstrate advanced features regarding
Function Block state preservation, state updates and transi-
tional properties, which goes beyond the currently available,
state-of-the-art automatic verification methods.

Our approach considers an encoding of the involved IEC
61449 components into the WhyML language of the Why3
program verification framework [4]. The behavior of the orig-
inal IEC 61499 Function Block is translated into WhyML
and enriched with the necessary contracts in the form of
pre- and post-conditions, loop variants/invariants, among other
program logic constructs rooted in Hoare logic [12], and
adopted a posteriori as the base for the design-by-contract
paradigm of Meyers [15]. Henceforth, given a IEC 61499
Function block already translated into WhyML, the Why3
platform is capable of generating all the logical verification
conditions necessary to ensure the correctness of the Function
Block with respect to its specification. Moreover, the Why3
platform provides excellent support for both automatic and
interactive theorem provers and therefore allows to discharge
the verification conditions in an automatic or assisted way.
Our approach is proof enabling and therefore opens up for
development of certified implementations. Also, by using a
deductive verification approach via Why3, our approach serves
as a complement to the currently more adopted technology of
model checking, which normally requires higher level models
that results from abstracting of the system’s concrete behavior.

I think to this end we could state that formal verification
can both reduce the time / effort to test based verification, and
lead to improved reliability, reusability etc.

II. BACKGROUND

A. IEC 61499

The IEC 61499 standard [13] provides a non-deterministic
executable model for distributed control systems in terms
of interacting function blocks. The execution semantics is
informally defined, and thus subject to interpretation (as no
official reference implementation is present). For the purpose
of the presented work, we briefly summarize key features of
the standard. For a comprehensive overview see e.g., [6].

1) Design Elements: In IEC 61499, all applications are
built from Function Blocks (FBs). There are three types of FBs:
Basic Function Blocks (BFBs), used to specify general behav-
ior; Service Interface Function Blocks (SIFBs), used to inter-
face the environment of a FB network; and finally, Composite
Function Blocks (CFBs), emerging from a composition of
BFBs and/or SIFBs and inner CFBs. In common, all FB types
provide an interface defining input events with associated input

ports (data connections), and output events with associated
output ports. The operation of a BFB is defined (in a finite state
machine like manner) by its Execution Control Chart (ECC),
input/output events, and input/output/local variables. Each state
in the ECC implies an ordered set of zero or more actions
(algorithms to execute and output events to emit) when visited.
An edge in the ECC defines a transition condition as either a
single input event, a Boolean expression on input/output and
local variables, or a combination thereof. The operation and
implementation of SIFBs are left undefined in the standard.
CFBs provides a hierarchical abstraction not considered in
this work. An abstract view of the operation (input/output
sequence) can optionally be defined as a Service Sequence
(compliant to the ISO TR 8509 and ISO/IEC 10731:1994
standards).

The specification of data types in the IEC 61499 standard
refers to that of IEC 61131-3 (the programming language
annex), which includes basic types (Boolean, sized signed and
unsigned integers with sub-ranges, etc.), fixed size strings,
records and multi-dimensional arrays. Transition conditions
and algorithms follow the language specification of IEC
61131-3, which includes Structured Text (ST) among other
supported formats. The ST language is an imperative language
with heritage to Pascal, and has become the de-facto choice to
many industrial developments. The IEC 61499 standard does
not exclude other languages for algorithm implementations.
Through supporting the common data types of 61131-3, inter-
operability can be achieved.

The standard IEC 61499 also introduce the notions of
adapters (for the grouping of event and data connections),
applications and sub-applications (for the grouping of FBs),
resources (for the scheduling of events), and devices for system
deployment.

2) Function Block Execution Model: The execution model
is an asynchronous, event driven model. A device may provide
one or more resource(s), responsible for the scheduling of
events. The order of event delivery is undefined, and therefore
the execution model is non-deterministic. The IEC 61499
standard defines the ECC execution semantics according to
Figure 8 (ECCex). The standard stipulates that:

1) (. . .) the resource shall ensure that no more than one
input event occurs at any given instant in time (. . .);

2) (. . .) Algorithm execution in a basic function block
shall consist of the execution of a finite sequence of
operations (. . .);

3) (. . .) If state s1 was entered via t1, only transition
conditions associated with the current input event,
or transition conditions with no event associations,
shall be evaluated. If state s1 was entered via t4,
only transition conditions with no event associations
shall be evaluated (. . .).

Taking as example the ECC exhibited in Figure 8, on event
delivery (t1), the associated input data connections are sampled
to the corresponding input data variables. For a BFB, the
ECC transition conditions from the current state are checked
in the order given by the occurrence in the underlying ECC
representation (s1). When a transition takes place (t3), the
actions of the target state are sequentially executed, implying
potential local/output-variable updates and the generation of

output events (s2). When finished, that is when no more actions
to execute, the input event is cleared (t4), and further transition
conditions (from the target state) are inspected (s1). In this
way, s1 and s2 are iterated until no further ECC transitions
are possible (t2), and the BFB returns to its idle state (s0),
awaiting for further events.

B. Why3

Why3 is a tool for deductive verification of programs.
Why3 provides a rich language called WhyML that allows
for users to simultaneously specify and program, with a clear
separation between the purely logical part of the specification
and the process of generating verification conditions from
the actual programming code. Following this approach, Why3
also acts as a font-end to several external theorem provers –
both automatic and user-assisted – that are used to discharge
the verification conditions generated in a verification process.
Furthermore, Why3 also enforces a notion of modular speci-
fication by providing users with the means to define theories
that are reusable via cloning inside larger developments.

III. IEC 61499 STATIC VERIFICATION

In this Section we present verification approaches for a
subset of the IEC 61499 standard from three viewpoints:
application development by composing already available com-
ponents; simple function block development, largely re-using
ready made algorithms; and, finally, advanced/safety-critical
function block development with focus on providing guaran-
tees to state-full and transitional behavior. While advanced and
safety-critical development usually requires experience and
prior knowledge in the areas of contract-based development
and formal verification, composition of FBs and re-use of
algorithms can be put at the hands of the non-experts since
their verification processes may be highly mechanized.

A. Component Level Verification

In this section we provide and hands-on example of our
approach towards component level verification of IEC 61499
models. For that, we assume the following informal specifica-
tion of a system comprised of:

• Two temperature sensors, where Sensor1 gives mea-
sures in Celsius c, in the range 0 ≤ c < 10 and
Sensor2, gives measures in Fahrenheit f , in the range
32 ≤ f < 50.

• A simple safety controller that, assumes measures in
Celsius c such that 0 ≤ c < 10, and that produce
Bang-Bang (Boolean) output (Sensor1 < Sensor2).

• A generic conversion service, converting Celsius to,
and from Fahrenheit.

1) IEC 61499 System Model: A possible Function Block
Network implementation for the running example is given in
Figure 1. The integer data type does not consider any specific
IEC 61499/6113-3 encoding. Sensor1 and Sensor2 are
instances of a generic FB_Sensor type. The (service) param-
eter DataType indicates measurement type, and Min/Max

the value range. The FB_ConvService is deployed to
convert the output values of Sensor2 to Celsius. The
FB_Controller is an instance of the generic Bang-Bang

controller with Min/Max defining the allowed control range
in Celsius.

The ECC for the FB_ConvService is presented in
Figure 2 and invokes the corresponding conversion algorithm
according to received event. The controller can be implemented
in a similar fashion like is shown in Figure 3.

Fig. 2: FB_ConvService ECC.

Fig. 3: FB_Controller ECC.

2) WhyML Verification Model: We now aim to verify, by
means of formal contracts, the compositional soundness at
the FB network level. Notice that here all FBs involved are
essentially stateless, i.e., state transition conditions and algo-
rithms depend neither on the ECC state, nor on the local/output
variables as depicted in Figure 2 and Figure 3. This allows, in
this specific case and from a contract perspective, to consider
output variables as functions from input variables. Section V
provides a discussion on the general case.

With the outset of state independency, we can construct
contracts at the BFB/SFB level in a straightforward manner.
We utilize the module system of Why3, which facilitates the
separation of concerns, and start by defining common data
types for the components.

3) WhyML Data: Data types are defined as traditionally
supported in functional programming. The metric_t type is
an algebraic data type whose constructors define an enumera-
tion of the supported temperature domains, while the val_t
type declaration defined a pair where the left elements is an
integer, and the right one is a value of metric_t. These
types can now be used within the Data module, or imported
in other models, like is exemplified in the module Test where
we declare a function instance test instance of type val_t
returning the pair made by the integer value 3 and the metric
value Fahrenheit.

module Data

use export int.Int

use export Pair

type metric_t =

| Celsius

| Fahrenheit

type val_t = (int, metric_t)

end

Notice, the module Test is not part of the final system
model, it serves just as a mere example demonstrating the type-
and module-system of Why3.

module Test

use import Data

let test () = (3, Fahrenheit)

end

4) WhyML ConvService: With the outset of state inde-
pendency (described in Section III-A2), we can capture the
ConvService function block by the ConvService func-
tional specification. Notice that here the div, imported from
int.ComputerDivision available in Why3’s API, fol-
lows the integer division semantics of commonly implemented
computer arithmetics.

theory ConvService

use import int.ComputerDivision

use export Data

function c_to_f (c : int) : int = (div (9 * c) 5) + 32

function f_to_c (f : int) : int = div ((f - 32) * 5) 9

function conv (d : value_t) (f : metric_t) : value_t

=

let (dv, dt) = d in

match dt, f with

| Celsius, Fahrenheit -> (c_to_f dv, Fahrenheit)

| Fahrenheit, Celsius -> (f_to_c dv, Celsius)

| (_, _) -> d

end

function to_Celsius (d : value_t) : int

= fst (conv d Celsius)

function to_Fahrenheit (d : value_t) : int

= fst (conv d Fahrenheit)

end

5) WhyML SensorGen, Sensor1 & Sensor2: We first de-
fine a generic sensor model SensorGen. This module is
parametrized by the constants min, max and metric which
will be later instantiated to define the concrete models for
Sensor1 and Sensor2. Besides these three parameters, the
module SensorGen also specifies a predicate that checks if a
value of type val_t is within the expected bounds, a function
red that is responsible for reading a val_t value and check
that it is in range via the in_range predicate, and a function
range_of that determines that calculates between the bound
of the range under consideration for sensor data.

module SensorGen

use export Data

constant min : int

constant max : int

constant metric : metric_t

type val_t

predicate in_range (v : val_t) =

min <= fst v < max /\ metric = snd v

val read () : val_t

ensures { in_range result }

function range_of () : int = max - min

end

module Sensor1

use import Data

constant s1_min : int = 0

constant s1_max : int = 10

constant s1_metric : metric_t = Celsius

clone export SensorGen with

Fig. 1: Function Block Network.

constant min = s1_min,

constant max = s1_max,

constant metric = s1_metric

end

module Sensor2

use import Data

constant s2_min : int = 32

constant s2_max : int = 50

constant s2_metric : metric_t = Fahrenheit

clone export SensorGen with

constant min = s2_min,

constant max = s2_max,

constant metric = s2_metric

end

6) WhyML SensorTest: Before we put the complete system
together, we demonstrate how verification in Why3 can be
put to use. First, we declare the WhyML modules Sensor1
and Senson2 that specify each of the sensors classes con-
sidered in the system. Then, in the implementation module
SensorTest, we build sensor instances S1 and S2 for the
specification modules Sensor1 and Senson2, respectively,
and also define a set of assertions that assert that both sensor
instances have positive range, that assert that all readings fall
within the range of respective sensor, and that assert that values
of S1 is within the range of S2. The verification results, using
as backend the automatic theorem prover Alt-Ergo [8], is that
the first three assertions pass while the forth fails (as expected)
as the predicate in_range requires equal metrics. The Why3
verification interface and produced results is depicted in Figure
4. Notice that SensorTest is just an example to demonstrate
the verification process and thus not part of the system model.

module SensorTest

clone import Sensor1 as S1

clone import Sensor2 as S2

let test()

=

assert { S1.range_of() > 0 /\ S2.range_of() > 0};

let s1_v = S1.read() in

let s2_v = S2.read() in

assert { S1.in_range s1_v};

assert { S2.in_range s2_v};

assert { S1.in_range s2_v};

(s1_v, s2_v)

end

7) WhyML ControlGen: The generic Bang-Bang controller
specification is captured by the ControlGen module. It

Fig. 4: Verification results in why3.

is parametrized by the range predicate (range_pred). It
requires that incoming sensor values (s1 and s2) are within
the defined range of the controller in order to ensure the result.

module ControlGen

use export ConvService

(* the range predicate is a parameter for the module *)

predicate in_range int

val control (s1 s2 : value_t) : bool

requires { in_range (to_Celsius s1) }

requires { in_range (to_Celsius s2) }

ensures { result = (to_Celsius s1 < to_Celsius s2) }

end

8) WhyML System: Finally we can put the system together,
and verify compositional soundness w.r.t the defined contracts.
We define a concrete range predicate and use that to instantiate
the ControlGen model. The system orchestration passes
readings from sensors S1 and S2 to the controller instance.
The result is scrutinized by an assertion to verify our expec-
tations.

For the given orchestration, all verification conditions
hold and are discharged by Alt-Ergo prover through Why3
and therefore we can conclude the composition to be cor-
rect. Counter-examples can be straightforwardly devised, e.g,
by limiting the control range, and/or increasing the sensor
range(s). The development is available on request, and all
examples will replay using Why3 without the need for any
additional libraries.

module System

clone import Sensor1 as S1

clone import Sensor2 as S2

(* should work in Celsius range 0 <= c < 10 *)

predicate range (c:int) = 0 <= c < 10

clone import ControlGen with predicate in_range = range

let orchestration () =

(* take readings from the sensors *)

let s1_v = S1.read () in

let s2_v = S2.read () in

(* present readings to the controller *)

let bang = control s1_v s2_v in

(* make sure the controller meets our expectations *)

assert {

match bang with

| True -> to_Celsius s1_v < to_Celsius s2_v

| False -> to_Celsius s1_v >= to_Celsius s2_v

end

}

end

9) Summary: We have shown how contracts at the com-
ponent level can be specified for the IEC 61499 standard,
and we have demonstrated that the verification conditions for
safe compositions can be discharged by automatic solvers.
With end-users in mind (e.g., plant operators and system
maintainers) mechanization and ease of use are of paramount
importance. To this end, the proposed approach is clearly
promising, allowing the standard library of IEC 61499 and
vendor specific I/O blocks to be designed by expert engineers
in the field and made available as trusted, contract carrying pre-
verified components, enabling safe orchestration by the end-
user. As exemplified, verification goes far beyond traditional
type checking of interfaces as functional and logical properties
can be captured.

B. Algorithm Level Verification

In the previous section we were dealing with specifications
(contracts) at the component (Function Block) level, without
any consideration of underlying implementations. Here we will
demonstrate how rigorous specifications (and implementations)
can be formulated for BFB algorithms. Again we take the
outset of a running example, capturing key aspects and demon-
strate the feasibility of our proposed approach.

Let us assume an informal specification of FB_Sort with
the corresponding interface depicted in Figure 5. On the arrival
of ISortArray, the output integer array oArray should
take on the sorted values (index 0 being the lowest) of the
input integer array IArray and the associated OSortEvent
should be triggered. Moreover, on the arrival of ISortElem,
the IElem integer value should be sorted into the current
oArray, and OElem should take on the overflowing integer
value and the event OSortElem should be triggered. We may
assume a fixed array length of 10, and initial values of all
variables to be 0.

1) FB_Variables: In order to formalize algorithm contracts,
we need a representation for FB variables. To this end, we
utilize a record type declaration as defined in the module
FB_Variables. The standard library of Why3 provides
polymorphic mutable arrays of fixed length. We use the integer
type without consideration of specific IEC 61499/61131-3 en-
coding. The fields iElem and oElem are declared as mutable,

Fig. 5: FB_Sort function block interface.

thus allowing them to be updated. The well_formed predi-
cate ensures a notion of well-formed arrays w.r.t. the length of
the input and output arrays. We define the mk_variables

contract in order to enforce proper initialization according to
the FB specification.

module FB_Variables

use export int.Int

use export array.Array

(* we model the variables of the FB as a record *)

type variable_t = {

(* input variables *)

iArray : array int;

mutable iElem : int;

(* no local variables *)

(* output variables *)

oArray : array int;

mutable oElem : int;

}

predicate well_formed (v : variable_t)

= length v.iArray = length v.oArray /\

length v.iArray > 0

val mk_variables (n : int) : variable_t

requires { 0 < n } (* array length *)

ensures {

let v = result in

well_formed v /\

v.iElem = 0 /\ v.oElem = 0 /\

forall i:int. 0 <= i < n ->

v.iArray[i] = 0 /\ v.oArray[i] = 0

}

end

2) Specification of Algorithms with Contracts: We can
now formulate the specifications for sort_array and
sort_elem as shown below1.

3) Algorithm Implementations: The Why3 platform ships
with a rich standard library and set of examples2. Among
these examples we find two imperative implementations of
in-place sorting of integer arrays (InsertionSortNaive
and InsertionSort, the latter reducing the num-
ber of swap operations). Both implementations are cer-
tified (pre-verified) to the sorted predicate (defined in
array.IntArraySorted), and can thus safely be re-used
in any setting of integer array sorting.

As applied in our example, the user can at a later stage
interchangeably chose in between the FB_SortSpec which
provides a mere specification for high level verification, or
FB_SortNaive / FB_SortOpt which provide refined im-
plementations allowing the extraction of certified code.

1A helper module FB_Gen is introduced to reduce textual replication.
2Additionally there is a large gallery of pre-verified algorithms and data

structures [20].

module FB_Gen

use export array.IntArraySorted

use export array.ArrayPermut

use export array.ArrayEq

use export FB_Variables

let copy_vars (v : variable_t) : unit

requires { well_formed v } (* well-formedness *)

ensures { array_eq v.iArray v.oArray } (* eq? *)

=

blit v.iArray 0 v.oArray 0 (length v.iArray);

end

module FB_SortSpec

use export FB_Gen

predicate sort_array_pred (v ov : variable_t) =

sorted v.oArray /\ (* output sorted *)

array_eq v.iArray ov.iArray /\ (* input preserved *)

permut_all (v.iArray) v.oArray (* data consistent *)

val sort_array (v : variable_t) : unit

requires { well_formed v } (* well-formedness *)

ensures { sort_array_pred v (old v) }

predicate sort_elem_pred (v ov : variable_t) =

sorted v.oArray /\ (* output sorted *)

array_eq v.iArray ov.iArray /\ (* input preserved *)

(forall a a’ : array int.

split_last_pred a (ov.oArray) v.iElem -> (* input *)

split_last_pred a’ (v.oArray) v.oElem -> (* output *)

permut_all a a’) /\ (* data consistent *)

(forall i:int. 0 <= i < (length v.oArray)

-> v.oElem >= v.oArray[i]) (* oElem largest *)

val sort_elem (v : variable_t) : unit

requires { well_formed v } (* well-formedness *)

ensures { sort_elem_pred v (old v) }

end

module FB_SortNaive

use import FB_SortSpec

use import InsertionSortNaive

let sort_array (v : variable_t) : unit

requires { well_formed v } (* well-formedness *)

ensures { sort_array_pred v (old v) }

=

copy_vars v (* copy variables *)

sort v.oArray; (* sort output in-place *)

end

module FB_SortOpt

use import FB_SortSpec

use import InsertionSort

let sort_array (v : variable_t) : unit

requires { well_formed v } (* well-formedness *)

ensures { sort_array_pred v (old v) }

=

copy_vars v (* copy variables *)

sort v.oArray; (* sort output in-place *)

end

Let us now focus on the sort_elem and sketch a possible
implementation below. In order to use the pre-verified in-
place sorting algorithms, we need to allocate a local array
a (with values of oArray appended with iElem). To fa-
cilitate development, we define a module ArrayAux (not
depicted here) that provides singleton arrays, appending a
single element (append_last) and splitting out last element
(split_last) together with accompanying predicates and
lemmas. As the length of arrays is non-mutable, this implies
allocation and copying.

module FB_ElemOpt

use export FB_SortSpec

use export ArrayAux

use import InsertionSort

(* the sort_elem algorithm *)

let sort_elem_opt (v : variable_t) : unit

requires { well_formed v }

ensures { sort_elem_pred v (old v) }

=

(* append iElem to current output array oArray *)

let a = append_last v.oArray v.iElem in

sort a; (* sort the array a *)

(* split in (hd, t), where t is the last element *)

let (hd, t) = split_last a in

(* store hd, t in output oArray and eElem *)

blit hd 0 v.oArray 0 (length hd);

v.oElem <- t

end

For the verification, we introduce ghost variables (and code),
which during later extraction are omitted from the gener-
ated code3. The complete set of verification conditions are
discharged by Alt-Ergo (after splitting VCs at the top-level)
within 10 seconds on an ordinary i7 based laptop, assigned 2
cores.

4) Summary: We have shown how FB variables can be
declared and how contracts for algorithms (operating on the FB
variables) can be specified.Moreover, we have demonstrated
how implementation refinement can re-use pre-defined/verified
data structures and that complex functional behavior (such as
sorting) can be automatically discharged through the Why3
platform. Building on the existing Why3 library and the rich
set of examples and gallery, new specifications and correspond-
ing certified implementations can be designed for the specific
application at hand, and/or stored for future re-use.

C. ECC Level Verification

In the previous Sections, we presented methods that leads
us towards highly mechanized verification at the component
and algorithm level of the IEC 61499 standard. In this Section
we focus on advanced features considering the transitional
properties of BFBs. Mastering those, the skilled engineer may
provide advanced contract carrying FBs and algorithms for
safe re-use.

1) ECC Execution Model: As briefly reviewed in Section
II-A, the standard provides an informal execution semantics
with the consequence of incompatible run-time environments
due to tool dependent interpretations. Moreover, the verifica-
tion becomes deployment-specific, as a consistent underpin-
ning is lacking. The issue has been acknowledged and various
formalization have been proposed. A particular problem to that
end is the potential non-termination of ECC transitions. The
standard informally requires termination at the algorithm level
and thus may be used as an outset for well-formedness. Our
proposed modeling in terms of Why3 largely helps to that end,
as termination for recursion as well as loops are required in
terms of well-founded and strictly decreasing variant’s.

However, ECC termination is not explicitly treated by the
standard, and is thus only an informal assumption on any

3For brevity, verification code and ghost declarations are omitted in the
listing.

correct implementation. However, by introducing restrictions
to the execution model, the general underlying halting problem
can be circumvented and termination granted [14]. Based on
the observation that transitions involving event conditions can
only be taken as the first step of a transition chain, well-
formedness can be stated by the non-existence of connected
components of the ECC graph after removing all edges with
associated event conditions.

In this work, we relax the well-formedness condition of
[14] allowing all models for which an upper bound is given
to the number of times each ECC node is visited on behalf on
a triggering event. While deriving the upper bound in general
is an undecidable problem, we foresee restrictions based on
well-founded relations to be applicable, but out of scope for
this presentation.

The presented modeling and verification approach focus the
internal behavior of BFBs, while modeling resource level event
dispatching and data variable propagation is left for future
work4.

2) Informal System description: Assume a system con-
sisting of: two valves, each controlled by the events
OE_Open/OE_Close and sensed by the event IE_Closed
(emitted when valve reaches its closed position), and a
(safety) controller FB_Save with inputs IE_Open1/2,
IE_Close1/2, and IE_Closed1/2 that shall:

• close both valves on IE_INIT;

• ensure that valve 1 should not be opened unless valve
2 is closed; and

• valve 2 should not be opened unless valve 1 is closed.

3) System Model: As the system is purely event based,
we must introduce the local (Boolean) variables IS_CL1

and IS_CL2 to hold the (virtual) states of valves 1 and
2 respectively. The safety controller FB_Safe component
and corresponding ECC are depicted in Figures 6 and 7
respectively.

Fig. 6: FB_Safe function block interface.

4) Modeling Function Block State: Events and states are
modeled as enums. The Function Block state is modeled as a
record holding the (mutable) current state, and the (mutable)
variables. A complete FB model also hold a map from events
to variables, but omitted here for brevity.

4For the latter, the IEC 61499 standard is very vague, which calls for further
investigations in order to propose a flexible yet analyzable semantics.

Fig. 7: FB_Safe ECC specification.

type variable_t = { (* FB variables as a record *)

mutable is_closed1 : bool; (* local variables *)

mutable is_closed2 : bool;

}

type i_event_t = (* events as enums *)

| IE_Init

| IE_Close1 | IE_Open1 | IE_Close2 | IE_Open2

| IE_Closed1 | IE_Closed2

type o_even_t =

| OE_Open1 | OE_Close1 | OE_Open2 | OE_Close2

type ecc_t = (* ECC states as enum *)

| S_Start | S_Init

| S_Open1 | S_Close1 | S_Open2 | S_Close2

| S_Closed1 | S_Closed2

type fb_state_t = { (* FB state as a record *)

mutable ecc : ecc_t;

v : var_t

}

function mk_state () (* initialization contract *)

ensures {

result.ecc = S_Start /\

result.v.is_closed1 = false /\

result.v.is_closed2 = false

}

5) ECC Actions: The ECC action specification, depicted
in Table I, is modelled by the function ecc_ex_action,
presented below, in a straightforward manner. The algorithms
(operating on the variables s.v) are inlined for brevity. In a
real setting algorithms may be externally defined. The resulting
set of output events is presented as a potentially empty (Nil)
list.

��

��

�� ��

��

�� ��

Fig. 8: ECCex.

State Algorithm Output Events

INIT IS_CL1 := False;

IS_CL2 := False;

OE_Close1

OE_Close2

Open1 IS_CL1 := False; OE_Open1

Open2 IS_CL2 := False; OE_Open2

Close1 OE_Close1

Close2 OE_Close2

Closed1 IS_CL1 := True; OE_Close1

Closed2 IS_CL2 := True; OE_Close2

TABLE I: ECC action specification

let ecc_ex_action (s : fb_state_t) : list o_event_t

(* a *)

ensures { mem OE_Open1 result -> s.ecc = S_Open1 }

(* b *)

ensures { mem OE_Open2 result -> s.ecc = S_Open2 }

=

match s.ecc with

| S_Start -> Nil

| S_Init -> Cons OE_Close1 (Cons OE_Close2 Nil)

| S_Open1 -> s.v.is_closed1 <- false;

Cons OE_Open1 Nil

| S_Close1 -> Cons OE_Close1 Nil

| S_Open2 -> s.v.is_closed2 <- false;

Cons OE_Open2 Nil

| S_Close2 -> Cons OE_Close2 Nil

| S_Closed1 -> s.v.is_closed1 <- true; Nil

| S_Closed2 -> s.v.is_closed2 <- true; Nil

end

6) ECC Execution: The ECC transition specification (Fig-
ure 7), is modeled by ecc_ex in a straightforward manner.
WhyML requires a termination condition on a strictly de-
creasing well-founded relation. To this end, ls represents the
(finite) list of ECC states to visit and ls’ the remaining states
after transition (where the length of ls’ is smaller than the
one of ls). This provides a relaxation of the ECC termination
condition proposed in [14], as ECC states may be revisited
an arbitrary, yet bounded number of times on behalf of a
triggering event. In the following, ti refer to a transition, and
sj to a state of the ECC operation state machine presented in
Figure 8 (ECCex), and as defined in the IEC 61499 standard.

let rec ecc_ex

(ie_opt : option i_event_t)

(s : fb_state)

(ls : list ecc_t) : list o_event_t

variant { length ls } (* strictly decreasing *)

requires { mem s.ecc ls }

= let ls’ = remove s.ecc ls in

’L:

let n_ecc_opt = match s.ecc with

| S_Init -> Some S_Init

| S_Init -> Some S_Init

| S_Open1 -> Some S_Init

| S_Open2 -> Some S_Init

| S_Close1 -> Some S_Init

| S_Close2 -> Some S_Init

| S_Closed1 -> Some S_Init

| S_Closed2 -> Some S_Init

| S_Start ->

match ie_opt with

| Some IE_Init -> Some S_Init

| Some IE_Open1 ->

(* a’ *)

if s.v.is_closed2 then Some S_Open1 else None

| Some IE_Open2 ->

(* b’ *)

if s.v.is_closed1 then Some S_Open2 else None

| Some IE_Close1 -> Some S_Close1

| Some IE_Close2 -> Some S_Close2

| Some IE_Closed1 -> Some S_Closed1

| Some IE_Closed2 -> Some S_Closed2

| _ -> None

end

end in

match n_ecc_opt with

| None -> Nil (* no more transitions *)

| Some n_ecc -> (* try transition *)

match mem n_ecc ls’ with

| False -> Nil (* ECC cycle, abort *)

| True ->

s.ecc <- n_ecc; (* take transition *)

let oe = ecc_ex_action s in (* execute action *)

assert { (mem OE_Open1 oe) -> (* A *)

(at s.v.is_closed2 ’L) = true };

assert { (mem OE_Open2 oe) -> (* B *)

(at s.v.is_closed1 ’L) = true };

(* iterate recursively and *)

(* return the appended list of output events *)

oe ++ (ecc_ex None s ls’)

end

end

Initially the BFB is awaiting for an event (ECCex is in
the idle state s0). The (resource) scheduler invokes ecc_ex
with an event ie_opt (Some x:i_event_t) (t1). ECC
transition conditions are evaluated into n_ecc_opt (s1). If
None (or the termination condition !mem n_ecc ls’ is
met) no more transitions are possible and the ECC execution
terminates (t2). Else the transition is taken (t3), and we update
the ECC state s.ecc <- n_ecc. In (s2) we execute the
(sequence) of actions, collect the resulting output events in
oe, and return with oe appended to the output events resulting
from invoking ecc_ex recursively (t4).

7) Static Verification: We can now statically verify the
ECC according to its specification, namely that valve 1 should
not be opened unless valve 2 is closed (and vice versa). This
amounts to assertions (* A *) and (* B *) respectively, in the
ecc_ex. Focusing the first case, we ensure that the occurrence
of an OE_Open1 implies that s.v.is_closed1 was true
at the point when action execution resulted in an OE_Open1.
Causality is key, and we refer to the precise point of reference
by the label ’L, as defined before the action is executed.

However, this alone does not suffice for automatic discharg-
ing of the corresponding verification condition, as we need to
establish a connection between the ecc_ex execution and the
ecc_ex_action (by means of contracts). To this end, we
ensure in ecc_ex_action (* a *) that an OE_Open1 event
implies that s.ecc is S_Open1. By deduction on (* a’ *), the
verification condition (* A *) can now be discharged by Why3
and we can conclude that valve 1 will not be opened unless
valve 2 is closed. Analogously, the verification condition of (*
B *) is discharged.

8) Summary: We have demonstrated how stateful and
transitional behavior of FB ECC execution can be modeled in
a straightforward manner. We have also shown that advanced
causal properties can be mechanically discharged provided ad-
equate contracts. By further lifting the insurance to the contract
of ecc_ex, stateful and transitional properties may be verified
for the composition of function blocks (as demonstrated in
Section III-A).

IV. TOWARDS CERTIFIED IMPLEMENTATIONS OF IEC
61499

In the presented work, the encoding of IEC 61499 models
in WhyML has been made by hand. It is clear that this is
a tedious and error prone process, and that the connection
in between the IEC 61499 models and their verification is

ad-hoc. However, we foresee that the encoding is largely
mechanizable if enriching the IEC 61499 input format with
contract information, following the lines of ACSL [2] and
SPARK [1].

To this end, suitable representations for the IEC 61499/IEC
61131-3 data types should be defined in WhyML and deployed
for automatic translation. The Why3 standard library int

provides ranged integers, floating_point (according to
IEEE-754), mach.int (arithmetics for programs, e.g., on
Int32, UInt32, etc.), and so forth, which in effect embody
the data types of IEC 61131-3.

At the algorithm level, the IEC 61499 endorses the IEC
61131-3 Structured Text language. With its heritage to Pascal,
and relative simplicity, translation into WhyML is foreseeable.
To the end of certification through extraction, one could also
think of translations from a subset of WhyML into structured
text. The latter would enable re-using a subset of existing pre-
verified algorithms and data structures already available. To
this end, the extraction process in Why3 is highly configurable
through a driver architecture.

In order to further improve usability, the Why3 platform
provides a rich programming API giving access to the internal
data structures and functions of Why3. This provides ample
opportunities towards tool-integration, bridging the gap in
between the FB design and verification processes. To this end,
we foresee to develop a verification server that establishes a
bridge between the FB IDE (e.g., the open source 4DIAC tool)
and the Why3 platform.

V. RELATED AND FUTURE WORK

Formal verification of IEC 61499 has been studied mainly
from the perspective of model checking, see e.g., the survey
[11]. A recent approach utilizing abstract state machines and
symbolic model checking is proposed in [17], allowing the
verification of non-boolean conditions. Our approach differs
by taking a deductive verification approach, which avoids
potential state space explosion problems that are common
when using model checking. Furthermore, our approach fol-
lows the lines of certified programming – allowing guarantees
to the functional correctness of the implementation w.r.t its
specification – and undertakes a contract based approach to
compositional verification. This opens up for compositional
and hierarchical verification following the lines of [9]. Initial
work in this direction, for compositional verification of IEC
61499 has recently been proposed [18]. However, the possi-
bility to express behaviour at the component level is limited
to service sequences in IEC 61499, which defines the set of
event sequences acceptable for the function blocks without any
notions of timing, data, and state. An extension to behavioural
types expressed in terms of extended regular expressions has
recently been proposed in [21]. While our approach focus
on static verification, the work presented in [21] in targets
run-time monitoring. Another related approach to IEC 61499
verification, takes the outset of observers [3], function blocks
added to the system model for the purpose of verification,
allowing static reachability analysis of erroneous states through
model checking.

Our deductive verification approach takes the outset of
manually specified contracts at the component, algorithm and

ECC levels. However, to manually specify the stateful and
transitional behaviour of complex function blocks may become
challenging and with limited usability. To this end, and besides
the aforementioned future work (Section IV), we focus current
and future work on the automatic contract generation from
the IEC 61499 models at the component (function block)
level. However, as mentioned, the expressiveness of behaviour
specification at the component level is very week. To this
end, extensions such as behavioural types [21] are promising,
allowing succinct and versatile specification for the component
interface.

VI. CONCLUSIONS

In this work, we have established a foundation for reason-
ing on a subset of IEC 61499 models by means of contracts.
Specifically we have targeted verification at the component,
algorithm and ECC levels. The feasibility of the approach
has been demonstrated on a set of representative use-cases,
for which assertions on compositional soundness, functional
correctness and non-trivial safety conditions have been au-
tomatically generated and effectively discharged through the
Why3 platform. The proposed method provides ample op-
portunities for mechanization as a majority of the presented
encodings in WhyML can be straightforwardly derived from
IEC 61499 models. Moreover, the design by contract approach
is proof enabling and allows for the extraction of certified
implementations. Future work includes further mechanization
and integration to IEC 61499 tool-chains, aspects of code
certification, and to establish semantics for reasoning on causal
and timely properties on IEC 61499 models.

ACKNOWLEDGEMENTS

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology), and the EU ARTEMIS JU funding, within project
ARTEMIS/0001/2013, JU grant nr. 621429 (EMC2) and VIN-
NOVA (Swedish Governmental Agency for Innovation Sys-
tems) and Svenska Kraftnät (Swedish national grid).

REFERENCES

[1] J. Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[2] P. Baudin, J.C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and
V. Prevosto. ACSL: ANSI C Specification Language (preliminary design
V1.2), preliminary edition, May 2008.

[3] Z.E. Bhatti, R. Sinha, and P.S. Roop. Observer based verification of
IEC 61499 function blocks. In 9th IEEE International Conference on
Industrial Informatics, pages 609–614, July 2011.

[4] F. Bobot, J.C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd
your herd of provers. In Boogie 2011: First International Workshop on
Intermediate Verification Languages, pages 53–64, Wrocław, Poland,
August 2011.

[5] G. Cengic and K. Akesson. On Formal Analysis of IEC 61499
Applications, Part A: Modeling. IEEE Transactions on Industrial
Informatics, 6(2):136–144, 2010.

[6] J. Christensen, T. Strasser, A. Valentini, V. Vyatkin, A. Zoitl,
J. Chouinard, H. Mayer, and A. Kopitar. The IEC 61499 Function Block
Standard: Software Tools and Runtime Platforms. In ISA Automation
Week, 2012.

[7] International Electrotechnical Commission. International Standard IEC
61499: Function Blocks - Part 1, Architecture. Geneva, Switzerland:
Int. Electrotech. Commission, 2012.

[8] S. Conchon, E. Contejean, and J. Kanig. CC(X): Efficiently combining
equality and solvable theories without canonizers. In Sava Krstic and
Albert Oliveras, editors, SMT 2007: 5th International Workshop on
Satisfiability Modulo, 2007.

[9] W. Dong, Z. Chen, and J. Wang. A contract-based approach to
specifying and verifying safety critical systems. Electronic Notes in
Theoretical Computer Science, 176(2):89 – 103, 2007.

[10] V. Dubinin and V. Vyatkin. On Definition of a Formal Model for IEC
61499 Function Blocks. EURASIP J. Embedded Syst., 2008:7:1–7:10,
April 2008.

[11] H.M. Hanisch, M. Hirsch, D. Missal, S. Preusse, and C. Gerber.
One Decade of IEC 61499 Modeling and Verification - Results and
Open Issues. In IFAC Symposium on Information Control Problems in
Manufacturing, 2009. Moscow, Russia.

[12] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

[13] IEC standards. International Electrotechnical Commission, March 2014.

[14] P. Lindgren, M. Lindner, D. Pereira, and L.M. Pinho. A Formal Per-
spective on IEC 61499. In IEEE International Workshop on Distributed
Intelligent Automation Systems. IEEE Computer Society Press, 2015.

[15] B. Meyer. Applying "design by contract". Computer, 25(10):40–51,
October 1992.

[16] S. Patil, V. Dubinin, C. Pang, and V. Vyatkin. Neutralizing Semantic
Ambiguities of Function Block Architecture by Modeling with ASM.
In Perspectives of System Informatics, volume 8974 of Lecture Notes
in Computer Science, pages 76–91. Springer Berlin Heidelberg, 2015.

[17] S. Patil, V. Dubinin, and V. Vyatkin. Formal verification of iec61499
function blocks with abstract state machines and smv – modelling. In
Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 3, pages 313–320, Aug
2015.

[18] H. Prahofer and A. Zoitl. Verification of hierarchical iec 61499
component systems with behavioral event contracts. In 11th IEEE
International Conference on Industrial Informatics, pages 578–585,
2013.

[19] C. Schnakenbourg, J.-M. Faure, and J.-J. Lesage. Towards IEC 61499
function blocks diagrams verification. In Systems, Man and Cybernetics,
2002 IEEE International Conference on, volume 3, pages 6 pp. vol.3–,
Oct 2002.

[20] The Why3 Development Team. Why3 gallery of verified programs,
May 2016. online: http://toccata.lri.fr/gallery/why3.en.html.

[21] M. Wenger, A. Zoitl, and J.O. Blech. Behavioral type-based monitoring
for iec 61499. In Emerging Technologies Factory Automation (ETFA),
2015 IEEE 20th Conference on, pages 1–8, Sept 2015.

