311,868 research outputs found

    A Web-Based Tool for Analysing Normative Documents in English

    Full text link
    Our goal is to use formal methods to analyse normative documents written in English, such as privacy policies and service-level agreements. This requires the combination of a number of different elements, including information extraction from natural language, formal languages for model representation, and an interface for property specification and verification. We have worked on a collection of components for this task: a natural language extraction tool, a suitable formalism for representing such documents, an interface for building models in this formalism, and methods for answering queries asked of a given model. In this work, each of these concerns is brought together in a web-based tool, providing a single interface for analysing normative texts in English. Through the use of a running example, we describe each component and demonstrate the workflow established by our tool

    Verifying Privacy-Type Properties in a Modular Way

    Get PDF
    Formal methods have proved their usefulness for analysing the security of protocols. In this setting, privacy-type security properties (e.g. vote-privacy, anonymity, unlink ability) that play an important role in many modern applications are formalised using a notion of equivalence. In this paper, we study the notion of trace equivalence and we show how to establish such an equivalence relation in a modular way. It is well-known that composition works well when the processes do not share secrets. However, there is no result allowing us to compose processes that rely on some shared secrets such as long term keys. We show that composition works even when the processes share secrets provided that they satisfy some reasonable conditions. Our composition result allows us to prove various equivalence-based properties in a modular way, and works in a quite general setting. In particular, we consider arbitrary cryptographic primitives and processes that use non-trivial else branches. As an example, we consider the ICAO e-passport standard, and we show how the privacy guarantees of the whole application can be derived from the privacy guarantees of its sub-protocols

    GlucoSynth: Generating Differentially-Private Synthetic Glucose Traces

    Full text link
    We focus on the problem of generating high-quality, private synthetic glucose traces, a task generalizable to many other time series sources. Existing methods for time series data synthesis, such as those using Generative Adversarial Networks (GANs), are not able to capture the innate characteristics of glucose data and cannot provide any formal privacy guarantees without severely degrading the utility of the synthetic data. In this paper we present GlucoSynth, a novel privacy-preserving GAN framework to generate synthetic glucose traces. The core intuition behind our approach is to conserve relationships amongst motifs (glucose events) within the traces, in addition to temporal dynamics. Our framework incorporates differential privacy mechanisms to provide strong formal privacy guarantees. We provide a comprehensive evaluation on the real-world utility of the data using 1.2 million glucose traces; GlucoSynth outperforms all previous methods in its ability to generate high-quality synthetic glucose traces with strong privacy guarantees
    • …
    corecore