2,736 research outputs found

    A product formula and combinatorial field theory

    Get PDF
    We treat the problem of normally ordering expressions involving the standard boson operators a, ay where [a; ay] = 1. We show that a simple product formula for formal power series | essentially an extension of the Taylor expansion | leads to a double exponential formula which enables a powerful graphical description of the generating functions of the combinatorial sequences associated with such functions | in essence, a combinatorial eld theory. We apply these techniques to some examples related to specic physical Hamiltonians

    Partially directed paths in a wedge

    Full text link
    The enumeration of lattice paths in wedges poses unique mathematical challenges. These models are not translationally invariant, and the absence of this symmetry complicates both the derivation of a functional recurrence for the generating function, and solving for it. In this paper we consider a model of partially directed walks from the origin in the square lattice confined to both a symmetric wedge defined by Y=±pXY = \pm pX, and an asymmetric wedge defined by the lines Y=pXY= pX and Y=0, where p>0p > 0 is an integer. We prove that the growth constant for all these models is equal to 1+21+\sqrt{2}, independent of the angle of the wedge. We derive functional recursions for both models, and obtain explicit expressions for the generating functions when p=1p=1. From these we find asymptotic formulas for the number of partially directed paths of length nn in a wedge when p=1p=1. The functional recurrences are solved by a variation of the kernel method, which we call the ``iterated kernel method''. This method appears to be similar to the obstinate kernel method used by Bousquet-Melou. This method requires us to consider iterated compositions of the roots of the kernel. These compositions turn out to be surprisingly tractable, and we are able to find simple explicit expressions for them. However, in spite of this, the generating functions turn out to be similar in form to Jacobi θ\theta-functions, and have natural boundaries on the unit circle.Comment: 26 pages, 5 figures. Submitted to JCT

    Coherent-state path integral versus coarse-grained effective stochastic equation of motion: From reaction diffusion to stochastic sandpiles

    Full text link
    We derive and study two different formalisms used for non-equilibrium processes: The coherent-state path integral, and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path integral and the corresponding field theory, using the annihilation process A+AAA+A\to A as an example. The field theory contains counter-intuitive quartic vertices. We show how they can be interpreted in terms of a first-passage problem. Reformulating the coherent-state path integral as a stochastic equation of motion, the noise generically becomes imaginary. This renders it not only difficult to interpret, but leads to convergence problems at finite times. We then show how alternatively an effective coarse-grained stochastic equation of motion with real noise can be constructed. The procedure is similar in spirit to the derivation of the mean-field approximation for the Ising model, and the ensuing construction of its effective field theory. We finally apply our findings to stochastic Manna sandpiles. We show that the coherent-state path integral is inappropriate, or at least inconvenient. As an alternative, we derive and solve its mean-field approximation, which we then use to construct a coarse-grained stochastic equation of motion with real noise.Comment: 29 pages, 33 figures. This is a pedagogic introduction to stochastic processes, their modeling, and effective field theory. Version 2: writing improved + a new appendi

    History of Catalan numbers

    Full text link
    We give a brief history of Catalan numbers, from their first discovery in the 18th century to modern times. This note will appear as an appendix in Richard Stanley's forthcoming book on Catalan numbers.Comment: 10 page
    corecore