7 research outputs found

    Comparison of Different Methods for Tissue Segmentation in Histopathological Whole-Slide Images

    Full text link
    Tissue segmentation is an important pre-requisite for efficient and accurate diagnostics in digital pathology. However, it is well known that whole-slide scanners can fail in detecting all tissue regions, for example due to the tissue type, or due to weak staining because their tissue detection algorithms are not robust enough. In this paper, we introduce two different convolutional neural network architectures for whole slide image segmentation to accurately identify the tissue sections. We also compare the algorithms to a published traditional method. We collected 54 whole slide images with differing stains and tissue types from three laboratories to validate our algorithms. We show that while the two methods do not differ significantly they outperform their traditional counterpart (Jaccard index of 0.937 and 0.929 vs. 0.870, p < 0.01).Comment: Accepted for poster presentation at the IEEE International Symposium on Biomedical Imaging (ISBI) 201

    An automatic entropy method to efficiently mask histology whole-slide images

    Get PDF
    Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called 'EntropyMasker' based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu's method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    KimiaNet: Training a Deep Network for Histopathology using High-Cellularity

    Get PDF
    With the recent progress in deep learning, one of the common approaches to represent images is extracting deep features. A primitive way to do this is by using off-the-shelf models. However, these features could be improved through fine-tuning or even training a network from scratch by domain-specific images. This desirable task is hindered by the lack of annotated or labeled images in the field of histopathology. In this thesis, a new network, namely KimiaNet, is proposed that uses an existing dense topology but is tailored for generating informative and discriminative deep features from histopathology images for image representation. This model is trained based on the existing DenseNet-121 architecture but by using more than 240,000 image patches of 1000 ⨉ 1000 pixels acquired at 20⨉ magnification. Considering the high cost of histopathology image annotation, which makes the idea impractical at a large scale, a high-cellularity mosaic approach is suggested which could be used as a weak or soft labeling method. Patches used for training the KimiaNet are extracted from 7,126 whole slide images of formalin-fixed paraffin-embedded (FFPE) biopsy samples, spanning 30 cancer sub-types and publicly available through The Cancer Genome Atlas (TCGA) repository. The quality of features generated by KimiaNet are tested via two types of image search, (i) given a query slide, searching among all of the slides and finding the ones with the tissue type similar to the query’s and (ii) searching among slides within the query slide’s tumor type and finding slides with the same cancer sub-type as the query slide’s. Compared to the pre-trained DenseNet-121 and the fine-tuned versions, KimiaNet achieved predominantly the best results for both search modes. In order to get an intuition of how effective training from scratch is on the expressiveness of the deep features, the deep features of randomly selected patches, from each cancer subtype, are extracted using both KimiaNet and pre-trained DenseNet-121 and visualized after reducing their dimensionality using t-distributed Stochastic Neighbor Embedding (tSNE). This visualization illustrates that for KimiaNet, the instances of each class can easily be distinguished from others while for pre-trained DenseNet the instances of almost all of the classes are mixed together. This comparison is another verification to show that how discriminative training with domain-specific images has made the features. Also, four simpler networks, made up of repetitions of convolutional, batch-normalization and Rectified Linear Unit (ReLU) layers, (CBR networks) are implemented and compared against the KimiaNet to check if the network design could still be further simplified. The experiments demonstrated that KimiaNet features are by far better than CBR networks which validate the DenseNet-121 as a good candidate for KimiaNet’s architecture

    Multi-Magnification Search in Digital Pathology

    Get PDF
    This research study investigates the effect of magnification on content-based image search in digital pathology archives and proposes to use multi-magnification image representation. Image search in large archives of digital pathology slides provides researchers and medical professionals with an opportunity to match records of current and past patients and learn from evidently diagnosed and treated cases. When working with microscopes, pathologists switch between different magnification levels while examining tissue specimens to find and evaluate various morphological features. Inspired by the conventional pathology workflow, this thesis investigates several magnification levels in digital pathology and their combinations to minimize the gap between AI-enabled image search methods and clinical settings. This thesis suggests two approaches for combining magnification levels and compares their performance. The first approach obtains a single-vector deep feature representation for a WSI, whereas the second approach works with a multi-vector deep feature representation. The proposed content-based searching framework does not rely on any pixel-level annotation and potentially applies to millions of unlabelled (raw) WSIs. This thesis proposes using binary masks generated by U-Net as the primary step of patch preparation to locating tissue regions in a WSI. As a part of this thesis, a multi-magnification dataset of histopathology patches is created by applying the proposed patch preparation method on more than 8,000 WSIs of TCGA repository. The performance of both MMS methods is evaluated by investigating the top three most similar WSIs to a query WSI found by the search. The search is considered successful if two out of three matched cases have the same malignancy subtype as the query WSI. Experimental search results across tumors of several anatomical sites at different magnification levels, i.e., 20Ă—, 10Ă—, and 5Ă— magnifications and their combinations, are reported in this thesis. The experiments verify that cell-level information at the highest magnification is essential for searching for diagnostic purposes. In contrast, low-magnification information may improve this assessment depending on the tumor type. Both proposed search methods generally performed more accurately at 20Ă— magnification or the combination of the 20Ă— magnification with 10Ă—, 5Ă—, or both. The multi-magnification searching approach achieved up to 11% increase in F1-score for searching among some tumor types, including the urinary tract and brain tumor subtypes compared to the single-magnification image search
    corecore